|
|
(17 dazwischenliegende Versionen von einem Benutzer werden nicht angezeigt) |
Zeile 1: |
Zeile 1: |
| {{pnc}}__NOTOC__ | | {{pnc}}__NOTOC__ |
| | | |
− | ===Antibody-dependent enhancement===
| + | {{ft|I}} |
− | {{tp|p=32361326|t=2020. Current studies of convalescent plasma therapy for COVID-19 may underestimate risk of antibody-dependent enhancement.|pdf=|usr=008}} | + | *'''[[Antibody-dependent enhancement ]]''' |
− | {{ttp|p=32504046|t=2020. Implications of antibody-dependent enhancement of infection for SARS-CoV-2 countermeasures.|pdf=|usr=007}}
| + | *'''[[Herd immunity ]]''' |
− | {{ttp|p=32092539|t=2020. Is COVID-19 receiving ADE from other coronaviruses?|pdf=|usr=}}
| + | *'''[[Neutralizing antibodies ]]''' |
− | {{tp|p=32268188|t=ä. It is too soon to attribute ADE to COVID-19 |pdf=|usr=}}
| + | *'''[[Innate immunology ]]''' |
− | {{ttp|p=31826992|t=2020. Molecular Mechanism for Antibody-Dependent Enhancement of Coronavirus Entry |pdf=|usr=}}''antibodies target one serotype of viruses but only subneutralize another, leading to antibody-dependend enhancement of the latter viruses.''
| + | *'''[[Integrative work ]]''' ''reviews, intertopic'' |
− | {{ttp|p=32317716|t=ä. The potential danger of suboptimal antibody responses in COVID-19 |pdf=|usr=}} ade
| + | *'''[[Cov2 modulates the immune system ]]''' |
− | {{tp|p=32346094|t=ä. COVID-19 vaccine design: the Janus face of immune enhancement |pdf=|usr=}}
| + | *'''[[Immune cell subpopulations ]]''' |
− | {{tp|p=32303697|t=ä. Will we see protection or reinfection in COVID-19?|pdf=|usr=}}
| + | *'''[[T cell exhaustion ]]''' |
− | {{tp|p=32438257|t=2020. SARS-CoV-2 and enhancing antibodies |pdf=|usr=}}
| + | *'''[[NK cells ]]''' |
− | {{ttp|p=32408068|t=2020. What about the original antigenic sin of the humans versus SARS-CoV-2?|pdf=|usr=}}''the term «original antigenic sin» (OAS) was coined by T. Francis Jr at the Michigan University in the late 1950s to describe patterns of antibody response to influenza vaccination...''
| + | |
− | {{tp|p=32436320|t=2020. The role of SARS-CoV-2 antibodies in COVID-19: Healing in most, harm at times.|pdf=|usr=007}}
| + | |
− | {{tp|p=32506725|t=2020. Dengue Fever, COVID-19 (SARS-CoV-2), and Antibody-Dependent Enhancement (ADE): A Perspective.|pdf=|usr=007}}
| + | |
− | {{tp|p=32529906|t=2020. Serological differentiation between COVID-19 and SARS infections.|pdf=|usr=008}}
| + | |
− | {{tp|p=32380903|t=2020. Lack of cross-neutralization by SARS patient sera towards SARS-CoV-2.|pdf=|usr=008}}
| + | |
− | {{tp|p=32426212|t=2020. Cross-reactive Antibody Response between SARS-CoV-2 and SARS-CoV Infections.|pdf=|usr=008}}
| + | |
− | {{tp|p=32526272|t=2020. Antibody-dependent enhancement and COVID-19: Moving toward acquittal.|pdf=|usr=008}}
| + | |
| | | |
− | | + | *'''[[MDSC myeloid-derived suppressor cells]] |
− | | + | *'''[[Antiviral immune response ]]''' |
− | ===Herd immunity===
| + | *'''[[Antiviral mediators ]]''' |
− | {{tp|p=32438622|t=2020. Dynamics of Population Immunity Due to the Herd Effect in the COVID-19 Pandemic.|pdf=|usr=007}}
| + | *'''[[Immunopathology ]]''' |
− | {{tp|p=32391855|t=2020. COVID-19 and Postinfection Immunity: Limited Evidence, Many Remaining Questions.|pdf=|usr=007}}
| + | *'''[[Secondary autoimmunity ]]''' |
− | {{tp|p=32510562|t=2020. Long-term and herd immunity against SARS-CoV-2: implications from current and past knowledge.|pdf=|usr=007}}
| + | *'''[[Thymus, Immunosenescence ]]''' |
− | {{tp|p=32418947|t=2020. Does immune privilege result in recovered patients testing positive for COVID-19 again?|pdf=|usr=007}}
| + | *'''[[Eosinophils ]]''' |
− | {{tp|p=32372779|t=2020. Do you become immune once you have been infected?|pdf=|usr=}}
| + | *'''[[Microbiome ]]''' |
− | {{tp|p=32433946|t=2020. Herd Immunity: Understanding COVID-19.|pdf=|usr=008}}
| + | *'''[[Pneumococcal synergism]]''' -new- |
− | {{tp|p=32509257|t=2020. SARS-CoV-2, "common cold" coronaviruses' cross-reactivity and "herd immunity": The razor of Ockham (1285-1347)?|pdf=|usr=008}}
| + | *'''[[Bio-misc ]]''' ''on topic biology papers which cannot be indexed by title'' |
− | {{tp|p=32397700|t=2020. [Analysis of application of herd immunity as a control strategy for COVID-19].|pdf=|usr=007}}
| + | *'''[[Hematology ]]''' |
− | | + | *'''[[Cytokine_storm,_hemophagocytic_lymphohistiocytosis,_macrophage_activation_syndrome|Cytokine storm ]]''' |
− | | + | *'''[[Candidate_Compounds_Covid19 |Immunopharmacology ]]''' |
− | ===Neutralizing antibodies===
| + | *'''[[Diagnosis_(Laboratory) |Clinical Laboratory Dx]]''' |
− | {{tp|p=32454513|t=2020. Human neutralizing antibodies elicited by SARS-CoV-2 infection.|pdf=|usr=007}}
| + | |
− | {{tp|p=32454512|t=2020. A human neutralizing antibody targets the receptor binding site of SARS-CoV-2.|pdf=|usr=007}}
| + | |
− | {{tp|p=32497196|t=2020. Neutralizing Antibodies Responses to SARS-CoV-2 in COVID-19 Inpatients and Convalescent Patients.|pdf=|usr=007}}
| + | |
− | {{ttp|p=32073157|t=2020. Antibodies to coronaviruses are higher in older compared with younger adults and binding antibodies are more sensitive than neutralizing antibodies in identifying coronavirus?associated illnesses |pdf=|usr=}}
| + | |
− | {{tp|p=32515685|t=2020. Dynamic surveillance of SARS-CoV-2 shedding and neutralizing antibody in children with COVID-19.|pdf=|usr=008}}
| + | |
− | | + | |
− | | + | |
− | ===Innate sensing===
| + | |
− | {{ttp|p=32291557|t=ä. SARS-CoV-2-encoded nucleocapsid protein acts as a viral suppressor of RNA interference in cells |pdf=|usr=}}
| + | |
− | {{tp|p=32198201|t=2020. Coronavirus endoribonuclease targets viral polyuridine sequences to evade activating host sensors |pdf=|usr=}}
| + | |
− | {{tp|p=32374430|t=2020. DC/L-SIGNs of Hope in the COVID-19 Pandemic |pdf=|usr=}}
| + | |
− | {{tp|p=32361001|t=ä. Bioinformatic analysis and identification of single-stranded RNA sequences recognized by TLR7/8 in the SARS-CoV-2, SARS-CoV, and MERS-CoV genomes |pdf=|usr=}}
| + | |
− | {{tp|p=32248387|t=ä. Use of DAMPs and SAMPs as Therapeutic Targets or Therapeutics: A Note of Caution |pdf=|usr=}}
| + | |
− | {{ttp|p=32407669|t=ä. Heightened Innate Immune Responses in the Respiratory Tract of COVID-19 Patients |pdf=|usr=}}
| + | |
− | {{tp|p=32456409|t=2020. A theory on SARS-COV-2 susceptibility: reduced TLR7-activity as a mechanistic link between men, obese and elderly.|pdf=|usr=007}}
| + | |
− | {{ttp|p=32156572|t=2020. Viroporins and inflammasomes: A key to understand virus-induced inflammation |pdf=|usr=}}
| + | |
− | {{ttp|p=32454408|t=2020. COVID-19 as a STING disorder with delayed over-secretion of interferon-beta.|pdf=|usr=008}}
| + | |
− | {{tp|p=32524333|t=2020. COVID 19: a clue from innate immunity.|pdf=|usr=008}}
| + | |
− | {{tp|p=32464098|t=2020. The Innate Immune System: Fighting on the Front Lines or Fanning the Flames of COVID-19?|pdf=|usr=008}}
| + | |
− | | + | |
− | | + | |
− | ===integrative work===
| + | |
− | *[https://www.cell.com/action/showPdf?pii=S1074-7613%2820%2930183-7 rev. on covid immunology]
| + | |
− | {{tp|p=32205856|t=2020. COVID-19 infection: the perspectives on immune responses |pdf=|usr=}}
| + | |
− | {{tp|p=32359396|t=ä. A Dynamic Immune Response Shapes COVID-19 Progression |pdf=|usr=}}
| + | |
− | {{tp|p=C7064018|t=ä. Coronavirus infections: Epidemiological, clinical and immunological features and hypotheses |pdf=|usr=}}
| + | |
− | {{ttp|p=C7200337|t=ä. Immunology of COVID-19: current state of the science |pdf=|usr=}}
| + | |
− | {{tp|p=32505227|t=2020. Immunology of COVID-19: Current State of the Science.|pdf=|usr=007}}
| + | |
− | {{tp|p=32469225|t=2020. COVID-19 and the immune system.|pdf=|usr=007}}
| + | |
− | {{ttp|p=32436629|t=2020. High COVID-19 virus replication rates, the creation of antigen-antibody immune complexes and indirect haemagglutination resulting in thrombosis.|pdf=|usr=007}}
| + | |
− | {{tp|p=32507543|t=2020. Spiking Pandemic Potential: Structural and Immunological Aspects of SARS-CoV-2.|pdf=|usr=007}}
| + | |
− | {{ttp|p=32504757|t=2020. Protective role of ACE2 and its downregulation in SARS-CoV-2 infection leading to Macrophage Activation Syndrome: Therapeutic implications.|pdf=|usr=007}}
| + | |
− | {{tp|p=32493812|t=2020. Role of Aging and the Immune Response to Respiratory Viral Infections: Potential Implications for COVID-19.|pdf=|usr=007}}
| + | |
− | {{tp|p=32470151|t=2020. The perplexing question of trained immunity versus adaptive memory in COVID-19.|pdf=|usr=007}}
| + | |
− | {{tp|p=32472706|t=2020. The Long-Standing History of Corynebacterium Parvum, Immunity and Viruses.|pdf=|usr=007}}
| + | |
− | {{tp|p=32213336|t=ä. SARS-CoV-2: virus dynamics and host response |pdf=|usr=}}
| + | |
− | {{tp|p=32437933|t=2020. Viral dynamics in asymptomatic patients with COVID-19.|pdf=|usr=008}}
| + | |
− | {{tp|p=32407836|t=2020. Longitudinal hematologic and immunologic variations associated with the progression of COVID-19 patients in China.|pdf=|usr=008}}
| + | |
− | {{tp|p=32498686|t=2020. Immunologic aspects of characteristics, diagnosis, and treatment of coronavirus disease 2019 (COVID-19).|pdf=|usr=008}}
| + | |
− | {{tp|p=32514817|t=2020. Immune Responses to SARS-CoV, MERS-CoV and SARS-CoV-2.|pdf=|usr=008}}
| + | |
− | {{tp|p=32460144|t=2020. Altered cytokine levels and immune responses in patients with SARS-CoV-2 infection and related conditions.|pdf=|usr=008}}
| + | |
− | {{tp|p=32417709|t=2020. Mechanism of inflammatory response in associated comorbidities in COVID-19.|pdf=|usr=008}}
| + | |
− | {{tp|p=32444400|t=2020. COVID-19 and the nicotinic cholinergic system.|pdf=|usr=008}}
| + | |
− | {{tp|p=32413330|t=2020. Detection of SARS-CoV-2-Specific Humoral and Cellular Immunity in COVID-19 Convalescent Individuals.|pdf=|usr=008}}
| + | |
− | {{tp|p=32514174|t=2020. A single-cell atlas of the peripheral immune response in patients with severe COVID-19.|pdf=|usr=008}}
| + | |
− | {{tp|p=32489708|t=2020. Immune Characteristics of Patients with Coronavirus Disease 2019 (COVID-19).|pdf=|usr=008}}
| + | |
− | {{tp|p=32396996|t=2020. Immune response to SARS-CoV-2 and mechanisms of immunopathological changes in COVID-19.|pdf=|usr=008}}
| + | |
− | {{ttp|p=32454136|t=2020. The role of IgA in COVID-19.|pdf=|usr=008}}
| + | |
− | {{ttp|p=32526273|t=2020. A plea for the pathogenic role of immune complexes in severe Covid-19.|pdf=|usr=008}}
| + | |
− | | + | |
− | | + | |
− | ===covid modulates the immune system===
| + | |
− | {{ttp|p=32514047|t=2020. Expansion of myeloid-derived suppressor cells in patients with severe coronavirus disease (COVID-19).|pdf=|usr=008}}
| + | |
− | {{ttp|p=32479746|t=2020. Host-Viral Infection Maps Reveal Signatures of Severe COVID-19 Patients.|pdf=|usr=008}}
| + | |
− | {{ttp|p=32529952|t=2020. SARS-CoV-2 nsp13, nsp14, nsp15 and orf6 function as potent interferon antagonists.|pdf=|usr=008}}
| + | |
− | {{tp|p=32364527|t=2020. Immune environment modulation in pneumonia patients caused by coronavirus: SARS-CoV, MERS-CoV and SARS-CoV-2 |pdf=|usr=}}
| + | |
− | {{tp|p=32172672|t=2020. A tug-of-war between severe acute respiratory syndrome coronavirus 2 and host antiviral defence: lessons from other pathogenic viruses |pdf=|usr=}}
| + | |
− | {{tp|p=32315725|t=ä. Suppressed T cell-mediated immunity in patients with COVID-19: a clinical retrospective study in Wuhan, China |pdf=|usr=}}
| + | |
− | {{ttp|p=32355328|t=ä. Impaired interferon signature in severe COVID-19 |pdf=|usr=}}
| + | |
− | {{tp|p=32375560|t=2020. SARS-CoV-2-Induced Immune Dysregulation and Myocardial Injury Risk in China: Insights from the ERS-COVID-19 Study |pdf=|usr=}}
| + | |
− | {{tp|p=32376308|t=ä. Lymphopenia is associated with severe coronavirus disease 2019 (COVID-19) infections: A systemic review and meta-analysis |pdf=|usr=}}
| + | |
− | {{ttp|p=32236983|t=2020. Why the immune system fails to mount an adaptive immune response to a COVID-19 infection |pdf=|usr=}}
| + | |
− | {{ttp|p=32286536|t=ä. Coronaviruses hijack the complement system |pdf=|usr=}}''host complement activator MASP2 as a target of the N protein of all three viruses''
| + | |
− | {{tp|p=32463803|t=2020. Impaired immune cell cytotoxicity in severe COVID-19 is IL-6 dependent.|pdf=|usr=007}}
| + | |
− | {{tp|p=32492165|t=2020. Clinical and Immune Features of Hospitalized Pediatric Patients With Coronavirus Disease 2019 (COVID-19) in Wuhan, China.|pdf=|usr=007}}
| + | |
− | {{tp|p=32514592|t=2020. Severe COVID-19 is associated with deep and sustained multifaceted cellular immunosuppression.|pdf=|usr=008}}
| + | |
− | {{tp|p=32456696|t=2020. COVID-19 patients exhibit less pronounced immune suppression compared with bacterial septic shock patients.|pdf=|usr=008}}
| + | |
− | {{tp|p=32502135|t=2020. Reduced monocytic HLA-DR expression indicates immunosuppression in critically ill COVID-19 patients.|pdf=|usr=008}}
| + | |
− | {{tp|p=32532524|t=2020. SARS-CoV-2-A Tough Opponent for the Immune System.|pdf=|usr=008}}
| + | |
− | {{tp|p=32416070|t=2020. Imbalanced Host Response to SARS-CoV-2 Drives Development of COVID-19.|pdf=|usr=008}}
| + | |
− | {{tp|p=32513989|t=2020. The inhibition of IL-2/IL-2R gives rise to CD8(+) T cell and lymphocyte decrease through JAK1-STAT5 in critical patients with COVID-19 pneumonia.|pdf=|usr=008}}
| + | |
− | | + | |
− | | + | |
− | ===immune cell subpopulations===
| + | |
− | {{tp|p=32282871|t=ä. Inflammatory Response Cells During Acute Respiratory Distress Syndrome in Patients With Coronavirus Disease 2019 (COVID-19) |pdf=|usr=}}
| + | |
− | {{tp|p=32325421|t=2020. Increased expression of CD8 marker on T-cells in COVID-19 patients |pdf=|usr=}}
| + | |
− | {{tp|p=32377375|t=2020. Immune cell profiling of COVID-19 patients in the recovery stage by single-cell sequencing |pdf=|usr=}}
| + | |
− | {{tp|p=32346099|t=ä. High-dimensional immune profiling by mass cytometry revealed immunosuppression and dysfunction of immunity in COVID-19 patients |pdf=|usr=}}
| + | |
− | {{tp|p=32339487|t=2020. Abnormalities of peripheral blood system in patients with COVID-19 in Wenzhou, China |pdf=|usr=}}
| + | |
− | {{tp|p=32361250|t=2020. Longitudinal characteristics of lymphocyte responses and cytokine profiles in the peripheral blood of SARS-CoV-2 infected patients |pdf=|usr=}}
| + | |
− | {{tp|p=32228226|t=2020. Transcriptomic characteristics of bronchoalveolar lavage fluid and peripheral blood mononuclear cells in COVID-19 patients |pdf=|usr=}}
| + | |
− | {{tp|p=32196410|t=2020. Hypothesis for potential pathogenesis of SARS-CoV-2 infection?a review of immune changes in patients with viral pneumonia |pdf=|usr=}}
| + | |
− | {{tp|p=32333914|t=ä. A possible role for B cells in COVID-19?: Lesson from patients with Agammaglobulinemia |pdf=|usr=}}
| + | |
− | {{tp|p=32344320|t=ä. The clinical course and its correlated immune status in COVID-19 pneumonia |pdf=|usr=}}
| + | |
− | {{tp|p=32325129|t=ä. The profile of peripheral blood lymphocyte subsets and serum cytokines in children with 2019 novel coronavirus pneumonia |pdf=|usr=}}
| + | |
− | {{tp|p=32283159|t=ä. Lymphocyte subset (CD4+, CD8+) counts reflect the severity of infection and predict the clinical outcomes in patients with COVID-19 |pdf=|usr=}}
| + | |
− | {{tp|p=32227123|t=ä. Characteristics of Peripheral Lymphocyte Subset Alteration in COVID-19 Pneumonia |pdf=|usr=}}
| + | |
− | {{tp|p=32343510|t=2020. COVID-19: are T lymphocytes simply watching?|pdf=|usr=}}
| + | |
− | {{tp|p=32379887|t=ä. T cell subset counts in peripheral blood can be used as discriminatory biomarkers for diagnosis and severity prediction of COVID-19 |pdf=|usr=}}
| + | |
− | {{tp|p=32297671|t=2020. Relationships among lymphocyte subsets, cytokines, and the pulmonary inflammation index in coronavirus (COVID-19) infected patients |pdf=|usr=}}
| + | |
− | {{tp|p=32352397|t=2020. The hemocyte counts as a potential biomarker for predicting disease progression in COVID-19: a retrospective study |pdf=|usr=}}
| + | |
− | {{tp|p=32379199|t=2020. A Typical Case of Critically Ill Infant of Coronavirus Disease 2019 With Persistent Reduction of T Lymphocytes |pdf=|usr=}}
| + | |
− | {{tp|p=32296069|t=2020. Lymphopenia predicts disease severity of COVID-19: a descriptive and predictive study |pdf=|usr=}}
| + | |
− | {{tp|p=32407057|t=2020. Peripheral lymphocyte subset monitoring in COVID19 patients: a prospective Italian real-life case series.|pdf=|usr=007}}
| + | |
− | {{tp|p=32297828|t=2020. Correlation Between Relative Nasopharyngeal Virus RNA Load and Lymphocyte Count Disease Severity in Patients with COVID-19 |pdf=|usr=}}
| + | |
− | {{tp|p=32370466|t=2020. Characteristics of peripheral blood leukocyte differential counts in patients with COVID-19 |pdf=|usr=}}
| + | |
− | {{tp|p=32114745|t=2020. Characteristics of peripheral blood leukocyte differential counts in patients with COVID-19 |pdf=|usr=}}
| + | |
− | {{tp|p=32377375|t=2020. Immune cell profiling of COVID-19 patients in the recovery stage by single-cell sequencing |pdf=|usr=}}
| + | |
− | {{tp|p=32361250|t=2020. Longitudinal characteristics of lymphocyte responses and cytokine profiles in the peripheral blood of SARS-CoV-2 infected patients |pdf=|usr=}}
| + | |
− | {{ttp|p=32376308|t=2020. Lymphopenia is associated with severe coronavirus disease 2019 (COVID-19) infections: A systemic review and meta-analysis |pdf=|usr=}}
| + | |
− | {{tp|p=32458561|t=2020. Lymphopenia in COVID-19: Therapeutic opportunities.|pdf=|usr=007}}
| + | |
− | {{tp|p=32420610|t=2020. Temporal changes in immune blood cell parameters in COVID-19 infection and recovery from severe infection.|pdf=|usr=007}}
| + | |
− | {{tp|p=32470153|t=2020. Characteristics of inflammatory factors and lymphocyte subsets in patients with severe COVID-19.|pdf=|usr=007}}
| + | |
− | {{tp|p=32474608|t=2020. Decreased B cells on admission was associated with prolonged viral RNA shedding from respiratory tract in Coronavirus Disease 2019: a case control study.|pdf=|usr=007}}
| + | |
− | {{tp|p=32483488|t=2020. Lymphopenia in severe coronavirus disease-2019 (COVID-19): systematic review and meta-analysis.|pdf=|usr=008}}
| + | |
− | {{tp|p=32382776|t=2020. Signals of Th2 immune response from COVID-19 patients requiring intensive care.|pdf=|usr=008}}
| + | |
− | {{tp|p=32417210|t=2020. The underlying changes and predicting role of peripheral blood inflammatory cells in severe COVID-19 patients: A sentinel?|pdf=|usr=008}}
| + | |
− | {{tp|p=32405080|t=2020. Decreased T cell populations contribute to the increased severity of COVID-19.|pdf=|usr=008}}
| + | |
− | {{tp|p=32407466|t=2020. An inflammatory profile correlates with decreased frequency of cytotoxic cells in COVID-19.|pdf=|usr=008}}
| + | |
− | | + | |
− | ===t cell exhaustion===
| + | |
− | {{tp|p=32249845|t=ä. Fighting COVID-19 exhausts T cells |pdf=|usr=}}
| + | |
− | {{tp|p=32479985|t=2020. Selective CD8 cell reduction by SARS-CoV-2 is associated with a worse prognosis and systemic inflammation in COVID-19 patients.|pdf=|usr=008}}
| + | |
− | {{ttp|p=32203188|t=ä. Functional exhaustion of antiviral lymphocytes in COVID-19 patients |pdf=|usr=}}
| + | |
− | {{ttp|p=32203186|t=ä. Elevated exhaustion levels and reduced functional diversity of T cells in peripheral blood may predict severe progression in COVID-19 patients |pdf=|usr=}}
| + | |
− | {{ttp|p=32203188|t=2020. Functional exhaustion of antiviral lymphocytes in COVID-19 patients |pdf=|usr=}}
| + | |
− | {{ttp|p=32203186|t=2020. Elevated exhaustion levels and reduced functional diversity of T cells in peripheral blood may predict severe progression in COVID-19 patients |pdf=|usr=}}
| + | |
− | {{tp|p=32414395|t=2020. COVID-19: room for treating T cell exhaustion?|pdf=|usr=008}}
| + | |
− | {{tp|p=32425950|t=2020. Reduction and Functional Exhaustion of T Cells in Patients With Coronavirus Disease 2019 (COVID-19).|pdf=|usr=008}}
| + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | ===nk cells===
| + | |
− | {{tp|p=32382127|t=ä. NKG2A and COVID-19: another brick in the wall |pdf=|usr=}}
| + | |
− | {{tp|p=32344314|t=2020. Innate immunity in COVID-19 patients mediated by NKG2A receptors, and potential treatment using Monalizumab, Cholroquine, and antiviral agents |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | ===plasmacytoid dendritic cells===
| + | |
− | {{tp|p=32298486|t=2020. Plasmacytoid lymphocytes in SARS-CoV-2 infection (Covid-19) |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | ===antiviral immune response===
| + | |
− | {{tp|p=32280952|t=ä. Good IgA bad IgG in SARS-CoV-2 infection?|pdf=|usr=}}
| + | |
− | {{tp|p=32353870|t=2020. The many faces of the anti-COVID immune response |pdf=|usr=}}
| + | |
− | {{tp|p=32358956|t=ä. Longitudinal Change of SARS-Cov2 Antibodies in Patients with COVID-19 |pdf=|usr=}}
| + | |
− | {{tp|p=31981224|t=2020. Coronavirus infections and immune responses |pdf=|usr=}}
| + | |
− | {{tp|p=32198005|t=2020. A case of COVID-19 and pneumonia returning from Macau in Taiwan: Clinical course and anti-SARS-CoV-2 IgG dynamic |pdf=|usr=}}
| + | |
− | {{tp|p=32284614|t=ä. Breadth of concomitant immune responses prior to patient recovery: a case report of non-severe COVID-19 |pdf=|usr=}}
| + | |
− | {{tp|p=32355329|t=ä. SARS-CoV-2-reactive T cells in patients and healthy donors |pdf=|usr=}}
| + | |
− | {{tp|p=32346091|t=ä. Neutralizing antibody response in mild COVID-19 |pdf=|usr=}}
| + | |
− | {{tp|p=32356908|t=2020. Mathematical modeling of interaction between innate and adaptive immune responses in COVID-19 and implications for viral pathogenesis |pdf=|usr=}}
| + | |
− | {{ttp|p=32343415|t=2020. Long-term coexistence of SARS-CoV-2 with antibody response in COVID-19 patients |pdf=|usr=}}
| + | |
− | {{tp|p=32330332|t=2020. SARS-CoV-2 infection in children - Understanding the immune responses and controlling the pandemic |pdf=|usr=}}
| + | |
− | {{tp|p=32267987|t=2020. Immune responses and pathogenesis of SARS?CoV?2 during an outbreak in Iran: Comparison with SARS and MERS |pdf=|usr=}}
| + | |
− | {{tp|p=32348715|t=2020. B Cells, Viruses, and the SARS-CoV-2/COVID-19 Pandemic of 2020 |pdf=|usr=}}
| + | |
− | {{tp|p=32382126|t=ä. Protective humoral immunity in SARS-CoV-2 infected pediatric patients |pdf=|usr=}}
| + | |
− | {{tp|p=32200654|t=2020. Time Kinetics of Viral Clearance and Resolution of Symptoms in Novel Coronavirus Infection |pdf=|usr=}}
| + | |
− | {{tp|p=32476607|t=2020. Delayed specific IgM antibody responses observed among COVID-19 patients with severe progression.|pdf=|usr=007}}
| + | |
− | {{tp|p=32449333|t=2020. (+)Ability of the immune system to fight viruses highlighted by cytometry and TCR clonotype assessments: lessons taken prior to COVID-19 virus pandemic outbreak.|pdf=|usr=007}}
| + | |
− | {{tp|p=32430094|t=2020. The dynamics of humoral immune responses following SARS-CoV-2 infection and the potential for reinfection.|pdf=|usr=007}}
| + | |
− | {{tp|p=32467617|t=2020. Serum IgA, IgM, and IgG responses in COVID-19.|pdf=|usr=007}}
| + | |
− | {{ttp|p=32467616|t=2020. More bricks in the wall against SARS-CoV-2 infection: involvement of gamma9delta2 T cells.|pdf=|usr=007}}
| + | |
− | {{ttp|p=32463434|t=2020. Metatranscriptomic Characterization of COVID-19 Identified A Host Transcriptional Classifier Associated With Immune Signaling.|pdf=|usr=007}}
| + | |
− | {{tp|p=32398307|t=2020. Distinct features of SARS-CoV-2-specific IgA response in COVID-19 patients.|pdf=|usr=008}}
| + | |
− | {{tp|p=32425634|t=2020. The dynamics of antibodies to SARS-CoV-2 in a case of SARS-CoV-2 infection.|pdf=|usr=008}}
| + | |
− | {{tp|p=32383183|t=2020. A comparison study of SARS-CoV-2 IgG antibody between male and female COVID-19 patients: A possible reason underlying different outcome between sex.|pdf=|usr=008}}{{tp|p=32521002|t=2020. Antibody profiles in mild and severe cases of COVID-19.|pdf=|usr=008}}
| + | |
− | {{tp|p=32399213|t=2020. Dynamics of peripheral immune cells and their HLA-G and receptor expressions in a patient suffering from critical COVID-19 pneumonia to convalescence.|pdf=|usr=008}}
| + | |
− | {{tp|p=32515684|t=2020. Patterns of IgG and IgM antibody response in COVID-19 patients.|pdf=|usr=008}}
| + | |
− | {{ttp|p=32425955|t=2020. Potential SARS-CoV-2 Preimmune IgM Epitopes.|pdf=|usr=008}}
| + | |
− | {{tp|p=32439770|t=2020. T cells found in coronavirus patients 'bode well' for long-term immunity.|pdf=|usr=008}}
| + | |
− | {{ttp|p=32473127|t=2020. Targets of T Cell Responses to SARS-CoV-2 Coronavirus in Humans with COVID-19 Disease and Unexposed Individuals.|pdf=|usr=008}}
| + | |
− | {{tp|p=32513850|t=2020. Early Insights into Immune Responses during COVID-19.|pdf=|usr=008}}
| + | |
− | | + | |
− | | + | |
− | | + | |
− | ===antiviral mediators===
| + | |
− | {{tp|p=32422144|t=2020. Perforin and resistance to SARS coronavirus 2.|pdf=|usr=008}}
| + | |
− | {{ttp|p=32437749|t=2020. Human Intestinal Defensin 5 Inhibits SARS-CoV-2 Invasion by Cloaking ACE2.|pdf=|usr=008}}
| + | |
− | | + | |
− | | + | |
− | ===mediators===
| + | |
− | {{tp|p=32360285|t=ä. Type I IFN immunoprofiling in COVID-19 patients |pdf=|usr=}}
| + | |
− | {{ttp|p=32376393|t=ä. Interleukin-17A (IL-17A), a key molecule of innate and adaptive immunity, and its potential involvement in COVID-19-related thrombotic and vascular mechanisms |pdf=|usr=}}
| + | |
− | {{ttp|p=32305501|t=ä. The Potential Role of Th17 Immune Responses in Coronavirus Immunopathology and Vaccine-induced Immune Enhancement |pdf=|usr=}}
| + | |
− | {{tp|p=30715745|t=2019. (+)Th17 serum cytokines in relation to laboratory?confirmed respiratory viral infection: A pilot study |pdf=|usr=}}
| + | |
− | {{tp|p=32414693|t=2020. Interleukin-6 levels in children developing SARS-CoV-2 infection |pdf=|usr=}}
| + | |
− | {{ttp|p=32421281|t=2020. Is there relationship between SARS-CoV 2 and the complement C3 and C4?|pdf=|usr=007}}
| + | |
− | {{tp|p=32437622|t=2020. Complement Activation During Critical Illness: Current Findings and an Outlook in the Era of COVID-19.|pdf=|usr=007}}
| + | |
− | {{tp|p=32475759|t=2020. IL-6: Relevance for immunopathology of SARS-CoV-2.|pdf=|usr=008}}
| + | |
− | | + | |
− | | + | |
− | | + | |
− | ===immunopathology===
| + | |
− | {{tp|p=32371101|t=ä. The correlation between SARS-CoV-2 infection and rheumatic disease |pdf=|usr=}}
| + | |
− | {{tp|p=32205186|t=2020. COVID-19 infection and rheumatoid arthritis: Faraway, so close!|pdf=|usr=}}
| + | |
− | {{tp|p=32308263|t=2020. CoViD-19 Immunopathology and Immunotherapy |pdf=|usr=}}
| + | |
− | {{tp|p=32320677|t=ä. Complex Immune Dysregulation in COVID-19 Patients with Severe Respiratory Failure |pdf=|usr=}}
| + | |
− | {{tp|p=32161940|t=ä. Dysregulation of immune response in patients with COVID-19 in Wuhan, China |pdf=|usr=}}
| + | |
− | {{tp|p=32282863|t=ä. Molecular immune pathogenesis and diagnosis of COVID-19 |pdf=|usr=}}
| + | |
− | {{tp|p=32321823|t=2020. COVID-19: an Immunopathological View |pdf=|usr=}}
| + | |
− | {{tp|p=32273594|t=ä. COVID-19: immunopathology and its implications for therapy |pdf=|usr=}}
| + | |
− | {{tp|p=32303696|t=ä. Macrophages: a Trojan horse in COVID-19?|pdf=|usr=}}
| + | |
− | {{ttp|p=32376901|t=ä. Pathological inflammation in patients with COVID-19: a key role for monocytes and macrophages |pdf=|usr=}}
| + | |
− | {{tp|p=32423059|t=2020. Recent Insight into SARS-CoV2 Immunopathology and Rationale for Potential Treatment and Preventive Strategies in COVID-19.|pdf=|usr=007}}
| + | |
− | {{tp|p=32485101|t=2020. Vascular Endothelial Growth Factor (VEGF) as a Vital Target for Brain Inflammation during the COVID-19 Outbreak.|pdf=|usr=007}}
| + | |
− | {{tp|p=32423917|t=2020. COVID-19 as an Acute Inflammatory Disease.|pdf=|usr=007}}
| + | |
− | {{ttp|p=32512289|t=2020. Neutralizing antibodies mediate virus-immune pathology of COVID-19.|pdf=|usr=007}}
| + | |
− | {{tp|p=32398875|t=2020. Single-cell landscape of bronchoalveolar immune cells in patients with COVID-19.|pdf=|usr=007}}
| + | |
− | {{tp|p=32391668|t=2020. [Dynamic inflammatory response in a critically ill COVID-19 patient treated with corticosteroids].|pdf=|usr=007}}
| + | |
− | {{ttp|p=32498376|t=2020. Neutrophils and Neutrophil Extracellular Traps Drive Necroinflammation in COVID-19.|pdf=|usr=007}}
| + | |
− | {{tp|p=32460357|t=2020. Immunopathological characteristics of coronavirus disease 2019 cases in Guangzhou, China.|pdf=|usr=007}}
| + | |
− | {{ttp|p=32492530|t=2020. Aberrant hyperactivation of cytotoxic T-cell as a potential determinant of COVID-19 severity.|pdf=|usr=008}}
| + | |
− | {{tp|p=32389590|t=2020. COVID-19: Unanswered questions on immune response and pathogenesis.|pdf=|usr=008}}
| + | |
− | {{tp|p=32422146|t=2020. Type 2 inflammation modulates ACE2 and TMPRSS2 in airway epithelial cells.|pdf=|usr=008}}
| + | |
− | {{tp|p=32521376|t=2020. SARS-CoV-2 (Covid-19): Interferon-epsilon may be responsible of decreased mortality in females.|pdf=|usr=008}}
| + | |
− | {{tp|p=32470851|t=2020. Role of oxidized LDL-induced "trained macrophages" in the pathogenesis of COVID-19 and benefits of pioglitazone: A hypothesis.|pdf=|usr=008}}
| + | |
− | {{tp|p=32454103|t=2020. Type I astrocytes and microglia induce a cytokine response in an encephalitic murine coronavirus infection.|pdf=|usr=008}}
| + | |
− | {{tp|p=32398804|t=2020. Is aberrant CD8+ T cell activation by hypertension associated with cardiac injury in severe cases of COVID-19?|pdf=|usr=008}}
| + | |
− | | + | |
− | | + | |
− | ===secondary autoimmunity===
| + | |
− | {{tp|p=32292901|t=2020. Pathogenic priming likely contributes to serious and critical illness and mortality in COVID-19 via autoimmunity |pdf=|usr=}}
| + | |
− | {{tp|p=32220633|t=2020. Could Sars-coronavirus-2 trigger autoimmune and/or autoinflammatory mechanisms in genetically predisposed subjects?|pdf=|usr=}}
| + | |
− | {{tp|p=32315487|t=2020. Clinical and Autoimmune Characteristics of Severe and Critical Cases of COVID-19 |pdf=|usr=}}
| + | |
− | {{ttp|p=32314313|t=2020. Is COVID-19 a proteiform disease inducing also molecular mimicry phenomena?|pdf=|usr=}}
| + | |
− | {{tp|p=32389543|t=ä. COVID-19 and molecular mimicry: The Columbus? egg?|pdf=|usr=}}
| + | |
− | {{tp|p=32444414|t=2020. Antibodies against immunogenic epitopes with high sequence identity to SARS-CoV-2 in patients with autoimmune dermatomyositis.|pdf=|usr=007}}
| + | |
− | {{ttp|p=32535095|t=2020. Molecular mimicry may explain multi-organ damage in COVID-19.|pdf=|usr=008}}
| + | |
− | {{tp|p=32535093|t=2020. Covid-19 and autoimmunity.|pdf=|usr=008}}
| + | |
− | {{tp|p=32461193|t=2020. Potential antigenic cross-reactivity between SARS-CoV-2 and human tissue with a possible link to an increase in autoimmune diseases.|pdf=|usr=008}}
| + | |
− | | + | |
− | | + | |
− | ===Thymus===
| + | |
− | {{tp|p=32340873|t=ä. Reply: Thymopoiesis, inflamm-aging, and COVID-19 phenotype |pdf=|usr=}}
| + | |
− | {{tp|p=32317217|t=ä. Role of thymopoiesis and inflamm-aging in COVID-19 phenotype |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | ===Eosinopenia, Eosinophilia===
| + | |
− | {{tp|p=32368728|t=ä. Eosinopenia and elevated C-reactive protein facilitate triage of COVID-19 patients in fever clinic: a retrospective case-control study |pdf=|usr=}}
| + | |
− | {{tp|p=32344056|t=ä. Eosinophil Responses During COVID-19 Infections and Coronavirus Vaccination |pdf=|usr=}}
| + | |
− | {{tp|p=32369190|t=2020. COVID-19, chronic inflammatory respiratory diseases and eosinophils - Observationsfrom reported clinical case series |pdf=|usr=}}
| + | |
− | {{ttp|p=32315429|t=ä. Eosinophil count in severe coronavirus disease 2019 (COVID-19) |pdf=|usr=}}
| + | |
− | {{tp|p=32315421|t=ä. Response letter to Eosinophil count in severe coronavirus disease 2019 (COVID-19) |pdf=|usr=}}
| + | |
− | {{tp|p=32390402|t=2020. SARS-CoV-2 and Eosinophilia.|pdf=|usr=007}}
| + | |
− | | + | |
− | | + | |
− | ===microbiome===
| + | |
− | {{tp|p=32497191|t=2020. Alterations of the Gut Microbiota in Patients with COVID-19 or H1N1 Influenza.|pdf=|usr=007}}
| + | |
− | {{ttp|p=32426999|t=2020. Gnotobiotic Rats Reveal That Gut Microbiota Regulates Colonic mRNA of Ace2, the Receptor for SARS-CoV-2 Infectivity.|pdf=|usr=007}}
| + | |
− | {{tp|p=32432790|t=2020. Editorial - COVID-19 and the microbiota: new kids on the block.|pdf=|usr=008}}
| + | |
− | {{tp|p=32442562|t=2020. Alterations in Gut Microbiota of Patients With COVID-19 During Time of Hospitalization.|pdf=|usr=008}}
| + | |
− | | + | |
− | ===009===
| + | |
− | | + | |
− | {{tp|p=32410760|t=2020. An outbreak of severe Kawasaki-like disease at the Italian epicentre of the SARS-CoV-2 epidemic: an observational cohort study.|pdf=|usr=009}}
| + | |
− | {{tp|p=32410759|t=2020. Kawasaki-like disease: emerging complication during the COVID-19 pandemic.|pdf=|usr=009}}
| + | |
− | {{tp|p=32534627|t=2020. Have deaths from COVID-19 in Europe plateaued due to herd immunity?|pdf=|usr=009}}
| + | |
− | {{tp|p=32534626|t=2020. Seroprevalence of anti-SARS-CoV-2 IgG antibodies in Geneva, Switzerland (SEROCoV-POP): a population-based study.|pdf=|usr=009}}
| + | |
− | {{tp|p=32246939|t=2020. SARS-CoV-2 in wastewater: potential health risk, but also data source.|pdf=|usr=009}}
| + | |
− | {{tp|p=32220289|t=2020. Early in the epidemic: impact of preprints on global discourse about COVID-19 transmissibility.|pdf=|usr=009}}
| + | |
− | {{tp|p=32386610|t=2020. Prevention of the cytokine storm in COVID-19.|pdf=|usr=009}}
| + | |
− | {{tp|p=32526193|t=2020. Pulmonary post-mortem findings in a series of COVID-19 cases from northern Italy: a two-centre descriptive study.|pdf=|usr=009}}
| + | |
− | {{tp|p=32526191|t=2020. Pathologists in pursuit of the COVID-19 culprit.|pdf=|usr=009}}
| + | |
− | {{tp|p=32470417|t=2020. COVID-19 international neurological registries.|pdf=|usr=009}}
| + | |
− | {{tp|p=32386571|t=2020. Tropism, replication competence, and innate immune responses of the coronavirus SARS-CoV-2 in human respiratory tract and conjunctiva: an analysis in ex-vivo and in-vitro cultures.|pdf=|usr=009}}
| + | |
− | {{tp|p=32386570|t=2020. Assessment of SARS-CoV-2 replication in the context of other respiratory viruses.|pdf=|usr=009}}
| + | |
− | {{tp|p=32473124|t=2020. Pulmonary and cardiac pathology in African American patients with COVID-19: an autopsy series from New Orleans.|pdf=|usr=009}}
| + | |
− | {{tp|p=32473123|t=2020. Small droplet aerosols in poorly ventilated spaces and SARS-CoV-2 transmission.|pdf=|usr=009}}
| + | |
− | {{tp|p=32446313|t=2020. Organoids of human airways to study infectivity and cytopathy of SARS-CoV-2.|pdf=|usr=009}}
| + | |
− | {{tp|p=32422178|t=2020. Pulmonary fibrosis and COVID-19: the potential role for antifibrotic therapy.|pdf=|usr=009}}
| + | |
− | {{tp|p=32422177|t=2020. Pulmonary fibrosis secondary to COVID-19: a call to arms?|pdf=|usr=009}}
| + | |
− | {{tp|p=32427161|t=2020. Novel paediatric presentation of COVID-19 with ARDS and cytokine storm syndrome without respiratory symptoms.|pdf=|usr=009}}
| + | |
− | {{tp|p=32483300|t=2020. SARS-CoV-2 infection and overactivation of Nlrp3 inflammasome as a trigger of cytokine "storm" and risk factor for damage of hematopoietic stem cells.|pdf=|usr=009}}
| + | |
− | {{tp|p=32502542|t=2020. The immune system and COVID-19: Friend or foe?|pdf=|usr=009}}
| + | |
− | {{tp|p=32430402|t=2020. Could severe COVID-19 be considered a complementopathy?|pdf=|usr=009}}
| + | |
− | {{tp|p=32284797|t=2020. We have to write and share valid and reliable information on COVID-19.|pdf=|usr=009}}
| + | |
− | {{tp|p=32535228|t=2020. Structural analysis of the putative SARS-CoV-2 primase complex.|pdf=|usr=009}}
| + | |
− | {{tp|p=32398026|t=2020. Allo-priming as a universal anti-viral vaccine: protecting elderly from current COVID-19 and any future unknown viral outbreak.|pdf=|usr=009}}
| + | |
− | {{tp|p=32522207|t=2020. COVID-19: viral-host interactome analyzed by network based-approach model to study pathogenesis of SARS-CoV-2 infection.|pdf=|usr=009}}
| + | |
− | {{tp|p=32487093|t=2020. The urgency of utilizing COVID-19 biospecimens for research in the heart of the global pandemic.|pdf=|usr=009}}
| + | |
− | {{tp|p=31712093|t=2020. Rapid manipulation of the porcine epidemic diarrhea virus genome by CRISPR/Cas9 technology.|pdf=|usr=009}}
| + | |
− | {{tp|p=32405428|t=2020. Summary of the coronavirus disease 2019 (COVID-19) update from the 2020 Conference on Retroviruses and Opportunistic Infections, 8-11 March 2020, Boston, USA.|pdf=|usr=009}}
| + | |
− | {{tp|p=32437497|t=2020. Postmortem Examination of Patients With COVID-19.|pdf=|usr=009}}
| + | |
− | {{tp|p=32412415|t=2020. A Snapshot of SARS-CoV-2 Genome Availability up to April 2020 and its Implications: Data Analysis.|pdf=|usr=009}}
| + | |
− | {{tp|p=32461141|t=2020. The case of Complement activation in COVID-19 multiorgan impact.|pdf=|usr=009}}
| + | |
− | {{tp|p=32446936|t=2020. Electron Microscopic Investigations in COVID-19: Not all Crowns Are Coronas.|pdf=|usr=009}}
| + | |
− | {{tp|p=32525010|t=2020. Thrombotic microangiopathy in a patient with COVID-19.|pdf=|usr=009}}
| + | |
− | {{tp|p=32437766|t=2020. Multivesicular bodies mimicking SARS-CoV-2 in patients without COVID-19.|pdf=|usr=009}}
| + | |
− | {{tp|p=32437765|t=2020. Autophagy inhibition by chloroquine and hydroxychloroquine could adversely affect acute kidney injury and other organ injury in critically ill patients with COVID-19.|pdf=|usr=009}}
| + | |
− | {{tp|p=32426558|t=2020. Kidney biopsy findings in a critically ill COVID-19 patient with dialysis-dependent acute kidney injury: a case against "SARS-CoV-2 nephropathy".|pdf=|usr=009}}
| + | |
− | {{tp|p=32442529|t=2020. Electron microscopy of SARS-CoV-2: a challenging task.|pdf=|usr=009}}
| + | |
− | {{tp|p=32442527|t=2020. Electron microscopy of SARS-CoV-2: a challenging task - Authors' reply.|pdf=|usr=009}}
| + | |
− | {{tp|p=32464112|t=2020. COVID-19-associated hyperviscosity: a link between inflammation and thrombophilia?|pdf=|usr=009}}
| + | |
− | {{tp|p=32446324|t=2020. Detection of SARS-CoV-2 in human breastmilk.|pdf=|usr=009}}
| + | |
− | {{tp|p=32482418|t=2020. Research during SARS-CoV-2 pandemic: To "Preprint" or not to "Preprint", that is the question.|pdf=|usr=009}}
| + | |
− | {{tp|p=32395713|t=2020. Melatonin Inhibits COVID-19-induced Cytokine Storm by Reversing Aerobic Glycolysis in Immune Cells: A Mechanistic Analysis.|pdf=|usr=009}}
| + | |
− | {{tp|p=32504925|t=2020. What would Sergio Ferreira say to your physician in this war against COVID-19: How about kallikrein/kinin system?|pdf=|usr=009}}
| + | |
− | {{tp|p=32464496|t=2020. Genetic variation in SARS-CoV-2 may explain variable severity of COVID-19.|pdf=|usr=009}}
| + | |
− | {{tp|p=32505066|t=2020. COVID-19: Loss of bridging between innate and adaptive immunity?|pdf=|usr=009}}
| + | |
− | {{tp|p=32460210|t=2020. "Therapeutic" facemasks.|pdf=|usr=009}}
| + | |
− | {{tp|p=32425304|t=2020. Reflection on lower rates of COVID-19 in children: Does childhood immunizations offer unexpected protection?|pdf=|usr=009}}
| + | |
− | {{tp|p=32447232|t=2020. COVID-19: beta-thalassemia subjects immunised?|pdf=|usr=009}}
| + | |
− | {{tp|p=32534341|t=2020. Could the decrease in the endothelial nitric oxide (NO) production and NO bioavailability be the crucial cause of COVID-19 related deaths?|pdf=|usr=009}}
| + | |
− | {{tp|p=32534340|t=2020. The intriguing commonality of NETosis between COVID-19 & Periodontal disease.|pdf=|usr=009}}
| + | |
− | {{tp|p=32534339|t=2020. A chilblain epidemic during the COVID-19 pandemic. A sign of natural resistance to SARS-CoV-2?|pdf=|usr=009}}
| + | |
− | {{tp|p=32505073|t=2020. Oral cancer and periodontal disease increase the risk of COVID 19? A mechanism mediated through furin and cathepsin overexpression.|pdf=|usr=009}}
| + | |
− | {{tp|p=32445664|t=2020. COVID-19 as a cause of immune thrombocytopenia.|pdf=|usr=009}}
| + | |
− | {{tp|p=32391393|t=2020. Digesting the crisis: autophagy and coronaviruses.|pdf=|usr=009}}
| + | |
− | {{tp|p=32405236|t=2020. Comparative review of respiratory diseases caused by coronaviruses and influenza A viruses during epidemic season.|pdf=|usr=009}}
| + | |
− | {{tp|p=32446902|t=2020. Immunoinformatic analysis of the SARS-CoV-2 envelope protein as a strategy to assess cross-protection against COVID-19.|pdf=|usr=009}}
| + | |
− | {{tp|p=32425647|t=2020. Covid-19 accelerates endothelial dysfunction and nitric oxide deficiency.|pdf=|usr=009}}
| + | |
− | {{tp|p=32381617|t=2020. Near-Complete Genome Sequence of a 2019 Novel Coronavirus (SARS-CoV-2) Strain Causing a COVID-19 Case in Peru.|pdf=|usr=009}}
| + | |
− | {{tp|p=32467284|t=2020. Coding-Complete Genome Sequences of Two SARS-CoV-2 Isolates from Egypt.|pdf=|usr=009}}
| + | |
− | {{tp|p=32467283|t=2020. Complete Genome Sequence of SARS-CoV-2 in a Tiger from a U.S. Zoological Collection.|pdf=|usr=009}}
| + | |
− | {{tp|p=32409547|t=2020. Complete Genome Sequences of SARS-CoV-2 Strains Detected in Malaysia.|pdf=|usr=009}}
| + | |
− | {{tp|p=32527780|t=2020. Complete Genome Sequence of a Novel Coronavirus (SARS-CoV-2) Isolate from Bangladesh.|pdf=|usr=009}}
| + | |
− | {{tp|p=32501301|t=2020. A rapid screening method for testing the efficiency of masks in breaking down aerosols.|pdf=|usr=009}}
| + | |
− | {{tp|p=32531352|t=2020. Importance of the evaluation of systemic microvascular flow and reactivity in critically ill patients with coronavirus disease 2019 - COVID-19.|pdf=|usr=009}}
| + | |
− | {{tp|p=32393381|t=2020. Perceived infection transmission routes, infection control practices, psychosocial changes, and management of COVID-19 infected healthcare workers in a tertiary acute care hospital in Wuhan: a cross-sectional survey.|pdf=|usr=009}}
| + | |
− | {{tp|p=32518047|t=2020. Cadaverless anatomy: Darkness in the times of pandemic Covid-19.|pdf=|usr=009}}
| + | |
− | {{tp|p=32427981|t=2020. Organoids demonstrate gut infection by SARS-CoV-2.|pdf=|usr=009}}
| + | |
− | {{tp|p=32461674|t=2020. The non-specific and sex-differential effects of vaccines.|pdf=|usr=009}}
| + | |
− | {{tp|p=32461672|t=2020. Kawasaki disease linked to COVID-19 in children.|pdf=|usr=009}}
| + | |
− | {{tp|p=32461671|t=2020. Innate T cells in COVID-19: friend or foe?|pdf=|usr=009}}
| + | |
− | {{tp|p=32457522|t=2020. Dysregulation of type I interferon responses in COVID-19.|pdf=|usr=009}}
| + | |
− | {{tp|p=32439870|t=2020. COVID-19: the vasculature unleashed.|pdf=|usr=009}}
| + | |
− | {{tp|p=32409742|t=2020. SARS-CoV-2 likes it cool.|pdf=|usr=009}}
| + | |
− | {{tp|p=32409741|t=2020. Modulation of immune crosstalk in COVID-19.|pdf=|usr=009}}
| + | |
− | {{tp|p=32514035|t=2020. Dissecting antibody-mediated protection against SARS-CoV-2.|pdf=|usr=009}}
| + | |
− | {{tp|p=32504061|t=2020. SARS-CoV-2 cross-reactivity in healthy donors.|pdf=|usr=009}}
| + | |
− | {{tp|p=32504060|t=2020. Immune evasion via SARS-CoV-2 ORF8 protein?|pdf=|usr=009}}
| + | |
− | {{tp|p=32504059|t=2020. Many paths to COVID-19 lymphocyte dysfunction.|pdf=|usr=009}}
| + | |
− | {{tp|p=32488201|t=2020. Blood clots and TAM receptor signalling in COVID-19 pathogenesis.|pdf=|usr=009}}
| + | |
− | {{tp|p=32533111|t=2020. A versatile mouse model of COVID-19.|pdf=|usr=009}}
| + | |
− | {{tp|p=32533110|t=2020. SARS-CoV-2 has a sweet tooth.|pdf=|usr=009}}
| + | |
− | {{tp|p=32528136|t=2020. Considering how biological sex impacts immune responses and COVID-19 outcomes.|pdf=|usr=009}}
| + | |
− | {{tp|p=32415242|t=2020. A spike with which to beat COVID-19?|pdf=|usr=009}}
| + | |
− | {{tp|p=32488173|t=2020. Antimicrobial use, drug-resistant infections and COVID-19.|pdf=|usr=009}}
| + | |
− | {{tp|p=32528128|t=2020. Bat-borne virus diversity, spillover and emergence.|pdf=|usr=009}}
| + | |
− | {{tp|p=32483314|t=2020. COVID-19: organoids go viral.|pdf=|usr=009}}
| + | |
− | {{tp|p=32445105|t=2020. Global Consortium Study of Neurological Dysfunction in COVID-19 (GCS-NeuroCOVID): Study Design and Rationale.|pdf=|usr=009}}
| + | |
− | {{tp|p=32509310|t=2020. Severe acute respiratory syndrome coronavirus 2: virus mutations in specific European populations.|pdf=|usr=009}}
| + | |
− | {{tp|p=32483490|t=2020. The role of selectivity of the SARS-CoV-2 virus for human genetic profiles in susceptibility and resistance to COVID-19.|pdf=|usr=009}}
| + | |
− | {{tp|p=32292587|t=2020. Mutated COVID-19, May Foretells Mankind in a Great Risk in the Future.|pdf=|usr=009}}
| + | |
− | {{tp|p=32427206|t=2020. Rare and extreme events: the case of COVID-19 pandemic.|pdf=|usr=009}}
| + | |
− | {{tp|p=32425360|t=2020. Systemic endothelial dysfunction: a common pathway for COVID-19, cardiovascular and metabolic diseases.|pdf=|usr=009}}
| + | |
− | {{tp|p=32409839|t=2020. Physician deaths from corona virus (COVID-19) disease.|pdf=|usr=009}}
| + | |
− | {{tp|p=32532805|t=2020. Thrombotic complications of COVID-19 may reflect an upregulation of endothelial tissue factor expression that is contingent on activation of endosomal NADPH oxidase.|pdf=|usr=009}}
| + | |
− | {{tp|p=32519118|t=2020. Okulare Post-mortem-Befunde bei an COVID-19 verstorbenen Patienten.|pdf=|usr=009}}
| + | |
− | {{tp|p=32412525|t=2020. The Myriad Ways in Which COVID-19 Revealed Character.|pdf=|usr=009}}
| + | |
− | {{tp|p=32528816|t=2020. Detection and Isolation of SARS-CoV-2 in Serum, Urine, and Stool Specimens of COVID-19 Patients from the Republic of Korea.|pdf=|usr=009}}
| + | |
− | {{tp|p=32528815|t=2020. Genome-Wide Identification and Characterization of Point Mutations in the SARS-CoV-2 Genome.|pdf=|usr=009}}
| + | |
− | {{tp|p=32397138|t=2020. A Systematic Review Analyzing the Prevalence and Circulation of Influenza Viruses in Swine Population Worldwide.|pdf=|usr=009}}
| + | |
− | {{tp|p=32529358|t=2020. Paediatric Inflammatory Multisystem Syndrome: Temporally Associated with SARS-CoV-2 (PIMS-TS): Cardiac Features, Management and Short-Term Outcomes at a UK Tertiary Paediatric Hospital.|pdf=|usr=009}}
| + | |
− | {{tp|p=32509472|t=2020. Insights on early mutational events in SARS-CoV-2 virus reveal founder effects across geographical regions.|pdf=|usr=009}}
| + | |
− | {{tp|p=32464327|t=2020. COVID-19 and Kawasaki disease in children.|pdf=|usr=009}}
| + | |
− | {{tp|p=32447571|t=2020. The Proteins of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS CoV-2 or n-COV19), the Cause of COVID-19.|pdf=|usr=009}}
| + | |
− | {{tp|p=32462744|t=2020. Shortlisting SARS-CoV-2 Peptides for Targeted Studies from Experimental Data-Dependent Acquisition Tandem Mass Spectrometry Data.|pdf=|usr=009}}
| + | |
− | {{tp|p=32405877|t=2020. A Review: Does Complement or the Contact System Have a Role in Protection or Pathogenesis of COVID-19?|pdf=|usr=009}}
| + | |
− | {{tp|p=32466999|t=2020. COVID-19 and asthma: To have or not to have T2 inflammation makes a difference?|pdf=|usr=009}}
| + | |
− | {{tp|p=32515676|t=2020. Cardiac MRI of Children with Multisystem Inflammatory Syndrome (MIS-C) Associated with COVID-19: Case Series.|pdf=|usr=009}}
| + | |
− | {{tp|p=32399393|t=2020. The potential role of TNFalpha in 2019 novel coronavirus pneumonia.|pdf=|usr=009}}
| + | |
− | {{tp|p=32415310|t=2020. Cyclosporine therapy in cytokine storm due to coronavirus disease 2019 (COVID-19).|pdf=|usr=009}}
| + | |
− | {{tp|p=32533292|t=2020. Targeting the immunology of coronavirus disease-19: synchronization creates symphony.|pdf=|usr=009}}
| + | |
− | {{tp|p=32445403|t=2020. SARS-CoV-2 infection-induced immune responses: Friends or foes?|pdf=|usr=009}}
| + | |
− | {{tp|p=32434946|t=2020. SARS-CoV-2 infection protects against rechallenge in rhesus macaques.|pdf=|usr=009}}
| + | |
− | {{tp|p=32513865|t=2020. Genomic surveillance reveals multiple introductions of SARS-CoV-2 into Northern California.|pdf=|usr=009}}
| + | |
− | {{tp|p=32388537|t=2020. Designing of improved drugs for COVID-19: Crystal structure of SARS-CoV-2 main protease M(pro).|pdf=|usr=009}}
| + | |
− | {{tp|p=32435059|t=2020. A suspicious role of interferon in the pathogenesis of SARS-CoV-2 by enhancing expression of ACE2.|pdf=|usr=009}}
| + | |
− | {{tp|p=32532959|t=2020. The role of furin cleavage site in SARS-CoV-2 spike protein-mediated membrane fusion in the presence or absence of trypsin.|pdf=|usr=009}}
| + | |
− | {{tp|p=32399806|t=2020. Is COVID-19 a New Hematologic Disease?|pdf=|usr=009}}
| + | |
− | {{tp|p=32500482|t=2020. Induced Pluripotent Stem Cells (iPSCs) Derived 3D Human Lung Organoids from Different Ethnicities to Understand the SARS-CoV2 Severity/Infectivity Percentage.|pdf=|usr=009}}
| + | |
− | {{tp|p=32528206|t=2020. COVID-19 and lessons learned from the pandemic wave of meningococcal meningitis (1985-1990).|pdf=|usr=009}}
| + | |
− | {{tp|p=32528193|t=2020. The Sudanese/British doctors who offered their lives fighting coronavirus (COVID-19) pandemic.|pdf=|usr=009}}
| + | |
− | {{tp|p=32505009|t=2020. ADAMTS13 activity, von Willebrand factor, factor VIII and D-dimers in COVID-19 inpatients.|pdf=|usr=009}}
| + | |
− | {{tp|p=32387238|t=2020. Covid-19, induced activation of hemostasis, and immune reactions: Can an auto-immune reaction contribute to the delayed severe complications observed in some patients?|pdf=|usr=009}}
| + | |
− | {{tp|p=32473312|t=2020. Efficacy of face mask in preventing respiratory virus transmission: A systematic review and meta-analysis.|pdf=|usr=009}}
| + | |
− | {{tp|p=32317245|t=2020. Ger Rijkers: Persistence of Memory in Times of COVID-19.|pdf=|usr=009}}
| + | |
− | {{tp|p=32423553|t=2020. Angiotensin converting enzyme: A review on expression profile and its association with human disorders with special focus on SARS-CoV-2 infection.|pdf=|usr=009}}
| + | |
− | {{tp|p=32500504|t=2020. SARS-Coronavirus-2 Nsp13 Possesses NTPase and RNA Helicase Activities That Can Be Inhibited by Bismuth Salts.|pdf=|usr=009}}
| + | |
− | {{tp|p=32434416|t=2020. Mice with humanized-lungs and immune system - an idealized model for COVID-19 and other respiratory illness.|pdf=|usr=009}}
| + | |
− | {{tp|p=32431949|t=2020. Multivariate analyses of codon usage of SARS-CoV-2 and other betacoronaviruses.|pdf=|usr=009}}
| + | |
− | {{tp|p=32531235|t=2020. Role of the GTNGTKR motif in the N-terminal receptor-binding domain of the SARS-CoV-2 spike protein.|pdf=|usr=009}}
| + | |
− | {{tp|p=32430279|t=2020. Gut microbiota and Covid-19- possible link and implications.|pdf=|usr=009}}
| + | |
− | {{tp|p=32417181|t=2020. COVID-19: CADD to the rescue.|pdf=|usr=009}}
| + | |
− | {{tp|p=32416259|t=2020. On the interactions of the receptor-binding domain of SARS-CoV-1 and SARS-CoV-2 spike proteins with monoclonal antibodies and the receptor ACE2.|pdf=|usr=009}}
| + | |
− | {{tp|p=32517266|t=2020. Propagation, Inactivation, and Safety Testing of SARS-CoV-2.|pdf=|usr=009}}
| + | |
− | {{tp|p=32512929|t=2020. The Prediction of miRNAs in SARS-CoV-2 Genomes: hsa-miR Databases Identify 7 Key miRs Linked to Host Responses and Virus Pathogenicity-Related KEGG Pathways Significant for Comorbidities.|pdf=|usr=009}}
| + | |
− | '''some other papers''' | + | |
− | {{tp|p=32215589|t=2020. Antibodies in Infants Born to Mothers With COVID-19 Pneumonia |pdf=|usr=}}
| + | |
− | {{tp|p=32504103|t=2020. Ten things we learned about COVID-19.|pdf=|usr=008}}
| + | |
− | {{tp|p=32494929|t=2020. COVID-19: 10 things I wished I'd known some months ago.|pdf=|usr=008}}
| + | |
− | {{tp|p=32437740|t=2020. The immunologic status of newborns born to SARS-CoV-2-infected mothers in Wuhan, China.|pdf=|usr=008}}
| + | |
− | {{tp|p=32510470|t=2020. Is innate immunity our best weapon for flattening the curve?|pdf=|usr=008}}
| + | |
− | {{tp|p=32464309|t=2020. Type I interferons can be detected in respiratory swabs from SARS-Cov-2 infected patients.|pdf=|usr=008}}
| + | |
− | {{tp|p=32398780|t=2020. The role of the exposome in promoting resilience or susceptibility after SARS-CoV-2 infection.|pdf=|usr=008}}
| + | |
− | {{tp|p=32534002|t=2020. Cancer population may be paradoxically protected from severe manifestations of COVID-19.|pdf=|usr=008}}
| + | |
− | {{tp|p=32360499|t=2020. Comparative seasonalities of influenza A, B and 'common cold' coronaviruses - setting the scene for SARS-CoV-2 infections and possible unexpected host immune interactions.|pdf=|usr=008}}
| + | |
− | {{tp|p=32283147|t=2020. Prolonged virus shedding even after seroconversion in a patient with COVID-19.|pdf=|usr=008}}
| + | |
− | {{ttp|p=32461703|t=2020. Mechanobiology predicts raft formations triggered by ligand-receptor activity across the cell membrane.|pdf=|usr=008}}
| + | |
− | {{tp|p=32412125|t=2020. Androgen sensitivity gateway to COVID-19 disease severity.|pdf=|usr=008}}
| + | |
− | {{tp|p=32393438|t=2020. Intelligent classification of platelet aggregates by agonist type.|pdf=|usr=008}}
| + | |
− | {{tp|p=32444797|t=2020. BBMRI-ERIC's contributions to research and knowledge exchange on COVID-19.|pdf=|usr=008}}
| + | |
− | {{tp|p=32415272|t=2020. Connecting data, tools and people across Europe: ELIXIR's response to the COVID-19 pandemic.|pdf=|usr=008}}
| + | |
− | {{tp|p=32376989|t=2020. The VODAN IN: support of a FAIR-based infrastructure for COVID-19.|pdf=|usr=008}}
| + | |
− | {{tp|p=32335973|t=2020. Of mice and men: COVID-19 challenges translational neuroscience.|pdf=|usr=008}}
| + | |
− | {{tp|p=32510005|t=2020. COVID-19 target: A specific target for novel coronavirus detection.|pdf=|usr=008}}
| + | |
− | {{tp|p=32526937|t=2020. Analysis of the Hosts and Transmission Paths of SARS-CoV-2 in the COVID-19 Outbreak.|pdf=|usr=008}}
| + | |
− | {{tp|p=32437706|t=2020. Evolution of severe acute respiratory syndrome coronavirus 2 RNA test results in a patient with fatal coronavirus disease 2019: a case report.|pdf=|usr=008}}
| + | |
− | {{tp|p=32392464|t=2020. SARS-CoV-2: Combating Coronavirus Emergence.|pdf=|usr=008}}
| + | |
− | {{tp|p=32473952|t=2020. SARS-CoV-2: The viral shedding vs infectivity dilemma.|pdf=|usr=008}}
| + | |
− | {{tp|p=32450246|t=2020. Molecular epidemiology of SARS-CoV-2 in Faisalabad, Pakistan: A real-world clinical experience.|pdf=|usr=008}}
| + | |
− | {{tp|p=32405281|t=2020. Sars-CoV-2 and black population: ACE2 as shield or blade?|pdf=|usr=008}}
| + | |
− | {{tp|p=32524515|t=2020. Perceived versus proven SARS-CoV-2-specific immune responses in health-care professionals.|pdf=|usr=008}}
| + | |
− | {{tp|p=32485251|t=2020. A recombinant Lactobacillus plantarum strain expressing the spike protein of SARS-CoV-2.|pdf=|usr=008}}
| + | |
− | {{tp|p=31896597|t=2020. Host AAA+ ATPase TER94 Plays Critical Roles in Building the Baculovirus Viral Replication Factory and Virion Morphogenesis.|pdf=|usr=008}}
| + | |
− | {{tp|p=32528156|t=2020. Ten recommendations for supporting open pathogen genomic analysis in public health.|pdf=|usr=008}}
| + | |
− | {{tp|p=32467367|t=2020. Scientists put survivors' blood plasma to the test.|pdf=|usr=008}}
| + | |
− | {{tp|p=32496715|t=2020. [Etiology of epidemic outbreaks COVID-19 on Wuhan, Hubei province, Chinese People Republic associated with 2019-nCoV (Nidovirales, Coronaviridae, Coronavirinae, Betacoronavirus, Subgenus Sarbecovirus): lessons of SARS-CoV outbreak.]|pdf=|usr=007}}
| + | |
− | {{tp|p=32455617|t=2020. Novel Dynamic Structures of 2019-nCoV with Nonlocal Operator via Powerful Computational Technique.|pdf=|usr=007}}
| + | |
− | {{tp|p=32512133|t=2020. Poor-sleep is associated with slow recovery from lymphopenia and an increased need for ICU care in hospitalized patients with COVID-19: A retrospective cohort study.|pdf=|usr=007}}
| + | |
− | {{tp|p=32512089|t=2020. Corona virus versus existence of human on the earth: A computational and biophysical approach.|pdf=|usr=007}}
| + | |
− | {{tp|p=32470223|t=2020. COVID-19: Structural Predictions of Viral Success.|pdf=|usr=007}}
| + | |
− | {{tp|p=32423901|t=2020. How covid-19 is accelerating the threat of antimicrobial resistance.|pdf=|usr=007}}
| + | |
− | {{tp|p=32504123|t=2020. COVID-19 research: toxicological input urgently needed!|pdf=|usr=007}}
| + | |
− | {{tp|p=32412787|t=2020. Bronchoscopy in COVID-19 Patients with Invasive Mechanical Ventilation: A Center Experience.|pdf=|usr=007}}
| + | |
− | {{tp|p=32213337|t=ä. Temporal profiles of viral load in posterior oropharyngeal saliva samples and serum antibody responses during infection by SARS-CoV-2: an observational cohort study |pdf=|usr=}}
| + | |
− | {{tp|p=32360743|t=ä. Lower detection rates of SARS-COV2 antibodies in cancer patients vs healthcare workers after symptomatic COVID-19 |pdf=|usr=}}
| + | |
− | {{tp|p=32292530|t=2020. Respiratory diseases, allergy and COVID-19 infection. First news from Wuhan|pdf=|usr=}}
| + | |
− | {{tp|p=32346093|t=ä. The trinity of COVID-19: immunity, inflammation and intervention |pdf=|usr=}}
| + | |
− | {{tp|p=32348636|t=2020. Hyposalivation as a potential risk for SARS-CoV-2 infection: Inhibitory role of saliva |pdf=|usr=}}
| + | |
− | {{tp|p=32235915|t=ä. COVID-19: a new challenge for human beings |pdf=|usr=}}
| + | |
− | {{ttp|p=32359201|t=2020. The first, holistic immunological model of COVID-19: implications for prevention, diagnosis, and public health measures |pdf=|usr=}}
| + | |
− | {{tp|p=32376309|t=2020. Viral kinetics of SARS-CoV-2 in asymptomatic carriers and presymptomatic patients |pdf=|usr=}}
| + | |
− | {{tp|p=32388390|t=2020. The powerful immune system against powerful COVID-19: A hypothesis |pdf=|usr=}}
| + | |
− | {{tp|p=32372807|t=2020. The fever paradox |pdf=|usr=}}
| + | |
− | {{tp|p=32220035|t=2020. SARS-CoV-2: What do we know so far?|pdf=|usr=008}}
| + | |
− | {{tp|p=32534452|t=2020. From causes of aging to death from COVID-19.|pdf=|usr=008}}
| + | |
− | {{tp|p=32489698|t=2020. COVID-19 Virulence in Aged Patients Might Be Impacted by the Host Cellular MicroRNAs Abundance/Profile.|pdf=|usr=008}}
| + | |
− | {{tp|p=32401346|t=2020. SARS-CoV-2 immunogenicity at the crossroads.|pdf=|usr=008}}
| + | |
− | {{tp|p=32053148|t=2020. Three Emerging Coronaviruses in Two Decades.|pdf=|usr=008}}
| + | |
− | {{tp|p=32516444|t=2020. Immunological environment shifts during pregnancy may affect the risk of developing severe complications in COVID-19 patients.|pdf=|usr=008}}
| + | |
− | {{tp|p=32439309|t=2020. Revision narrativa sobre la respuesta inmunitaria frente a coronavirus: descripcion general, aplicabilidad para SARS-COV-2 e implicaciones terapeuticas.|pdf=|usr=008}}
| + | |
− | | + | |
− | {{tp|p=32458383|t=2020. On barring the vascular gateway against severe COVID-19 disease.|pdf=|usr=008}}
| + | |
− | {{tp|p=32526483|t=2020. COVID 19 and brain crosstalks.|pdf=|usr=008}}
| + | |
− | {{tp|p=32533824|t=2020. Tuberculosis and type 2 Diabetes Mellitus: an inflammatory danger signal in the time of COVID-19.|pdf=|usr=008}}
| + | |
− | {{tp|p=32425712|t=2020. Evidence Supporting a Phased Immuno-physiological Approach to COVID-19 From Prevention Through Recovery.|pdf=|usr=008}}
| + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | ===010===
| + | |
− | | + | |
− | | + | |
− | | + | |
− | {{tp|p=32575076|t=2020. Re-analysis of SARS-CoV-2-infected host cell proteomics time-course data by impact pathway analysis and network analysis: a potential link with inflammatory response.|pdf=|usr=010}}
| + | |
− | {{tp|p=32558150|t=2020. Individual variation of the SARS-CoV-2 receptor ACE2 gene expression and regulation.|pdf=|usr=010}}
| + | |
− | {{tp|p=32591839|t=2020. Infectability of human BrainSphere neurons suggests neurotropism of SARS-CoV-2.|pdf=|usr=010}}
| + | |
− | {{tp|p=32551862|t=2020. NOVEL INSIGHTS ON THE PULMONARY VASCULAR CONSEQUENCES OF COVID-19.|pdf=|usr=010}}
| + | |
− | {{tp|p=32586680|t=2020. A mechanistic analysis placental intravascular thrombus formation in COVID-19 patients.|pdf=|usr=010}}
| + | |
− | {{tp|p=32583086|t=2020. COVID-19-driven endothelial damage: complement, HIF-1, and ABL2 are potential pathways of damage and targets for cure.|pdf=|usr=010}}
| + | |
− | {{tp|p=32556599|t=2020. Full genome sequence of the first SARS-CoV-2 detected in Mexico.|pdf=|usr=010}}
| + | |
− | {{tp|p=32565512|t=2020. Exploration and correlation analysis of changes in Krebs von den Lungen-6 levels in COVID-19 patients with different types in China.|pdf=|usr=010}}
| + | |
− | {{tp|p=32585135|t=2020. Neutralization of SARS-CoV-2 by Destruction of the Prefusion Spike.|pdf=|usr=010}}
| + | |
− | {{tp|p=32587367|t=2020. Potential contribution of increased soluble IL-2R to lymphopenia in COVID-19 patients.|pdf=|usr=010}}
| + | |
− | {{tp|p=32555321|t=2020. The ORF3a protein of SARS-CoV-2 induces apoptosis in cells.|pdf=|usr=010}}
| + | |
− | {{tp|p=32541836|t=2020. Systemically comparing host immunity between survived and deceased COVID-19 patients.|pdf=|usr=010}}
| + | |
− | {{tp|p=32553163|t=2020. Modulation of Extracellular ISG15 Signaling by Pathogens and Viral Effector Proteins.|pdf=|usr=010}}
| + | |
− | {{tp|p=32579880|t=2020. A Human Pluripotent Stem Cell-based Platform to Study SARS-CoV-2 Tropism and Model Virus Infection in Human Cells and Organoids.|pdf=|usr=010}}
| + | |
− | {{tp|p=32565270|t=2020. Editorial: Why is modeling COVID-19 so difficult?|pdf=|usr=010}}
| + | |
− | {{tp|p=32574709|t=2020. COVID-19 pneumonia: CD8(+) T and NK cells are decreased in number but compensatory increased in cytotoxic potential.|pdf=|usr=010}}
| + | |
− | {{tp|p=32578831|t=2020. Human Leukocyte Transcriptional Response to SARS-CoV-2 Infection.|pdf=|usr=010}}
| + | |
− | {{tp|p=32546195|t=2020. Micronutrient status of COVID-19 patients: a critical consideration.|pdf=|usr=010}}
| + | |
− | {{tp|p=32539816|t=2020. Response to "COVID-19: room for treating T cell exhaustion?"|pdf=|usr=010}}
| + | |
− | {{tp|p=32539769|t=2020. COVID-19 targets the right lung.|pdf=|usr=010}}
| + | |
− | {{tp|p=32559324|t=2020. Unraveling the mystery of Covid-19 Cytokine storm: From skin to organ systems.|pdf=|usr=010}}
| + | |
− | {{tp|p=32558055|t=2020. SARS CoV-2 aggravates cellular metabolism mediated complications in COVID-19 infection.|pdf=|usr=010}}
| + | |
− | {{tp|p=32574956|t=2020. Alveolar macrophage dysfunction and cytokine storm in the pathogenesis of two severe COVID-19 patients.|pdf=|usr=010}}
| + | |
− | {{tp|p=32559343|t=2020. Rationale for targeting Complement in COVID-19.|pdf=|usr=010}}
| + | |
− | {{tp|p=32559338|t=2020. Autopsy registry can facilitate COVID-19 research.|pdf=|usr=010}}
| + | |
− | {{tp|p=32558639|t=2020. Isolation, Sequence, Infectivity, and Replication Kinetics of Severe Acute Respiratory Syndrome Coronavirus 2.|pdf=|usr=010}}
| + | |
− | {{tp|p=32543353|t=2020. SARS-CoV-2 genomic surveillance in Taiwan revealed novel ORF8-deletion mutant and clade possibly associated with infections in Middle East.|pdf=|usr=010}}
| + | |
− | {{tp|p=32543348|t=2020. Virus strain from a mild COVID-19 patient in Hangzhou represents a new trend in SARS-CoV-2 evolution potentially related to Furin cleavage site.|pdf=|usr=010}}
| + | |
− | {{tp|p=32542429|t=2020. Worldwide ACE (I/D) polymorphism may affect COVID-19 recovery rate: an ecological meta-regression.|pdf=|usr=010}}
| + | |
− | {{tp|p=32583353|t=2020. What about COVID-19 and arachidonic acid pathway?|pdf=|usr=010}}
| + | |
− | {{tp|p=32554538|t=2020. Endothelial cell dysfunction: a major player in SARS-CoV-2 infection (COVID-19)?|pdf=|usr=010}}
| + | |
− | {{tp|p=32562316|t=2020. A proposed role for the SARS-CoV-2 nucleocapsid protein in the formation and regulation of biomolecular condensates.|pdf=|usr=010}}
| + | |
− | {{tp|p=32583231|t=2020. Age-related decline of de novo T cell responsiveness as a cause of COVID-19 severity.|pdf=|usr=010}}
| + | |
− | {{tp|p=32556942|t=2020. Severe COVID-19 and aging: are monocytes the key?|pdf=|usr=010}}
| + | |
− | {{tp|p=32542743|t=2020. Diffuse Alveolar Damage (DAD) from Coronavirus Disease 2019 Infection is Morphologically Indistinguishable from Other Causes of DAD.|pdf=|usr=010}}
| + | |
− | {{tp|p=32569607|t=2020. Lymphopenia during the COVID-19 infection: What it shows and what can be learned.|pdf=|usr=010}}
| + | |
− | {{tp|p=32592845|t=2020. Comparative analysis of protein synthesis rate in COVID-19 with other human coronaviruses.|pdf=|usr=010}}
| + | |
− | {{tp|p=32564017|t=2020. The Role of Genetic Sex and Mitochondria in Response to COVID-19 Infection.|pdf=|usr=010}}
| + | |
− | {{tp|p=32544911|t=2020. Strategies to Prevent SARS-CoV-2-Mediated Eosinophilic Disease in Association with COVID-19 Vaccination and Infection.|pdf=|usr=010}}
| + | |
− | {{tp|p=32585285|t=2020. Herd Immunity and Vaccination of children for COVID19.|pdf=|usr=010}}
| + | |
− | {{tp|p=32574694|t=2020. Relationship between Chest CT manifestations and immune response in COVID-19 patients.|pdf=|usr=010}}
| + | |
− | {{tp|p=32552178|t=2020. Pathological Findings of Postmortem Biopsies From Lung, Heart, and Liver of 7 Deceased COVID-19 Patients.|pdf=|usr=010}}
| + | |
− | {{tp|p=32572527|t=2020. SARS-CoV-2 viral loads and serum IgA/IgG immune responses in critically ill COVID-19 patients.|pdf=|usr=010}}
| + | |
− | {{tp|p=32557383|t=2020. Low ADAMTS 13 plasma levels are predictors of mortality in COVID-19 patients.|pdf=|usr=010}}
| + | |
− | {{tp|p=32540792|t=2020. Eosinophil Response Against Classical and Emerging Respiratory Viruses: COVID-19.|pdf=|usr=010}}
| + | |
− | {{tp|p=32540791|t=2020. Upper and Lower Airways Functional Examination in Asthma and Respiratory Allergic Deseases. Considerations in the SARS-CoV-2 Post-Pandemic Situation.|pdf=|usr=010}}
| + | |
− | {{tp|p=32559180|t=2020. COVID-19 infection alters kynurenine and fatty acid metabolism, correlating with IL-6 levels and renal status.|pdf=|usr=010}}
| + | |
− | {{tp|p=32554923|t=2020. The complement system in COVID-19: friend and foe?|pdf=|usr=010}}
| + | |
− | {{tp|p=32576678|t=2020. Upregulation of CD47 Is a Host Checkpoint Response to Pathogen Recognition.|pdf=|usr=010}}
| + | |
− | {{tp|p=32592919|t=2020. Endothelial dysfunction in Coronavirus disease 2019 (COVID-19): Gender and age influences.|pdf=|usr=010}}
| + | |
− | {{tp|p=32570168|t=2020. Microvascular disease confers additional risk to COVID-19 infection.|pdf=|usr=010}}
| + | |
− | {{tp|p=32590062|t=2020. Out of the frying pan and into the fire? Due diligence warranted for ADE in COVID-19.|pdf=|usr=010}}
| + | |
− | {{tp|p=32586872|t=2020. Genome Sequence of SARS-CoV-2 Isolate Cali-01, from Colombia, Obtained Using Oxford Nanopore MinION Sequencing.|pdf=|usr=010}}
| + | |
− | {{tp|p=32572155|t=2020. A systematic review of pathological findings in COVID-19: a pathophysiological timeline and possible mechanisms of disease progression.|pdf=|usr=010}}
| + | |
− | {{tp|p=32561849|t=2020. In situ detection of SARS-CoV-2 in lungs and airways of patients with COVID-19.|pdf=|usr=010}}
| + | |
− | {{tp|p=32581081|t=2020. Rampant C-->U Hypermutation in the Genomes of SARS-CoV-2 and Other Coronaviruses: Causes and Consequences for Their Short- and Long-Term Evolutionary Trajectories.|pdf=|usr=010}}
| + | |
− | {{tp|p=32581077|t=2020. COVID-19 Hyperinflammation: What about Neutrophils?|pdf=|usr=010}}
| + | |
− | {{tp|p=32581217|t=2020. Structural plasticity of SARS-CoV-2 3CL M(pro) active site cavity revealed by room temperature X-ray crystallography.|pdf=|usr=010}}
| + | |
− | {{tp|p=32572247|t=2020. Sex differences in immune responses in COVID-19.|pdf=|usr=010}}
| + | |
− | {{tp|p=32572245|t=2020. Roles for eosinophils and basophils in COVID-19?|pdf=|usr=010}}
| + | |
− | {{tp|p=32546853|t=2020. Understanding SARS-CoV-2-related multisystem inflammatory syndrome in children.|pdf=|usr=010}}
| + | |
− | {{tp|p=32561873|t=2020. COVID-19 revisiting inflammatory pathways of arthritis.|pdf=|usr=010}}
| + | |
− | {{tp|p=32543705|t=2020. Evolutionary relationships and sequence-structure determinants in human SARS coronavirus-2 spike proteins for host receptor recognition.|pdf=|usr=010}}
| + | |
− | {{tp|p=32589296|t=2020. COVID-19: A series of important recent clinical and laboratory reports in immunology and pathogenesis of SARS-CoV-2 infection and care of allergy patients.|pdf=|usr=010}}
| + | |
− | {{tp|p=32584441|t=2020. Immunology of COVID-19: mechanisms, clinical outcome, diagnostics and perspectives - a report of the European Academy of Allergy and Clinical Immunology (EAACI).|pdf=|usr=010}}
| + | |
− | {{tp|p=32592394|t=2020. A role for selenium-dependent GPX1 in SARS-CoV-2 virulence.|pdf=|usr=010}}
| + | |
− | {{tp|p=32579026|t=2020. COVID-19 Related Acute Respiratory Distress Syndrome: Not so Atypical.|pdf=|usr=010}}
| + | |
− | {{tp|p=32579023|t=2020. Severe Hypoxemia in Early COVID-19 Pneumonia.|pdf=|usr=010}}
| + | |
− | {{tp|p=32539537|t=2020. Why COVID-19 Silent Hypoxemia is Baffling to Physicians.|pdf=|usr=010}}
| + | |
− | {{tp|p=32568751|t=2020. Abdominal Surgery in Patients with COVID-19: Detection of SARS-CoV-2 in Abdominal and Adipose Tissues.|pdf=|usr=010}}
| + | |
− | {{tp|p=32589448|t=2020. Postmortem swabs in the Sars-CoV-2 Pandemic: Report on 12 complete clinical autopsy cases.|pdf=|usr=010}}
| + | |
− | {{tp|p=32579380|t=2020. Adrenal Vascular Changes in COVID-19 Autopsies.|pdf=|usr=010}}
| + | |
− | {{tp|p=32579477|t=2020. Platelets and Immunity: Going Viral.|pdf=|usr=010}}
| + | |
− | {{tp|p=32578486|t=2020. Autophagy/virophagy: a "disposal strategy" to combat COVID-19.|pdf=|usr=010}}
| + | |
− | {{tp|p=32578982|t=2020. Molecular Basis for ADP-ribose Binding to the Mac1 Domain of SARS-CoV-2 Nsp3.|pdf=|usr=010}}
| + | |
− | {{tp|p=32573711|t=2020. Platelet Gene Expression and Function in COVID-19 Patients.|pdf=|usr=010}}
| + | |
− | {{tp|p=32543703|t=2020. SARS-CoV2 may evade innate immune response, causing uncontrolled neutrophil extracellular traps formation and multi-organ failure.|pdf=|usr=010}}
| + | |
− | {{tp|p=32562764|t=2020. Dual function of sialic acid in gastrointestinal SARS-CoV-2 infection.|pdf=|usr=010}}
| + | |
− | {{tp|p=32592406|t=2020. Immune response in children with COVID-19 is characterized by lower levels of T cell activation than infected adults.|pdf=|usr=010}}
| + | |
− | {{tp|p=32567404|t=2020. Multiple organ dysfunction in SARS-CoV-2: MODS-CoV-2.|pdf=|usr=010}}
| + | |
− | {{tp|p=32588493|t=2020. COVID-19-Associated dyslipidemia: Implications for mechanism of impaired resolution and novel therapeutic approaches.|pdf=|usr=010}}
| + | |
− | {{tp|p=32543971|t=2020. Increased CD4/CD8 ratio as a risk factor for critical illness in coronavirus disease 2019 (COVID-19): a retrospective multicentre study.|pdf=|usr=010}}
| + | |
− | {{tp|p=32561682|t=2020. AKI and Collapsing Glomerulopathy Associated with COVID-19 and APOL 1 High-Risk Genotype.|pdf=|usr=010}}
| + | |
− | {{tp|p=32579100|t=2020. Insights into SARS-CoV-2, the Coronavirus Underlying COVID-19: Recent Genomic Data and the Development of Reverse Genetics Systems.|pdf=|usr=010}}
| + | |
− | {{tp|p=32568027|t=2020. SARS-coronavirus-2 replication in Vero E6 cells: replication kinetics, rapid adaptation and cytopathology.|pdf=|usr=010}}
| + | |
− | {{tp|p=32544216|t=2020. COVID-19 and Crosstalk With the Hallmarks of Aging.|pdf=|usr=010}}
| + | |
− | {{tp|p=32554340|t=2020. The COVID-19 pandemic: is there a role for magnesium? Hypotheses and perspectives.|pdf=|usr=010}}
| + | |
− | {{tp|p=32590326|t=2020. Pulmonary surfactant itself must be a strong defender against SARS-CoV-2.|pdf=|usr=010}}
| + | |
− | {{tp|p=32574708|t=2020. Mitochondria and Microbiota dysfunction in COVID-19 pathogenesis.|pdf=|usr=010}}
| + | |
− | {{tp|p=32591762|t=2020. COVID-19 severity correlates with airway epithelium-immune cell interactions identified by single-cell analysis.|pdf=|usr=010}}
| + | |
− | {{tp|p=32546768|t=2020. Immune status could determine efficacy of COVID-19 therapies.|pdf=|usr=010}}
| + | |
− | {{tp|p=32555388|t=2020. Convergent antibody responses to SARS-CoV-2 in convalescent individuals.|pdf=|usr=010}}
| + | |
− | {{tp|p=32562746|t=2020. Tackle the free radicals damage in COVID-19.|pdf=|usr=010}}
| + | |
− | {{tp|p=32562814|t=2020. Statins and other drugs: Facing COVID-19 as a vascular disease.|pdf=|usr=010}}
| + | |
− | {{tp|p=32581126|t=2020. Opinion: What models can and cannot tell us about COVID-19.|pdf=|usr=010}}
| + | |
− | {{tp|p=32571934|t=2020. Syrian hamsters as a small animal model for SARS-CoV-2 infection and countermeasure development.|pdf=|usr=010}}
| + | |
− | {{tp|p=32556292|t=2020. COVID-19 and granulomatosis with polyangiitis (GPA): a diagnostic challenge.|pdf=|usr=010}}
| + | |
− | {{tp|p=32576668|t=2020. A mathematical model reveals the influence of population heterogeneity on herd immunity to SARS-CoV-2.|pdf=|usr=010}}
| + | |