Immunology

Aus coViki
(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
 
(20 dazwischenliegende Versionen von einem Benutzer werden nicht angezeigt)
Zeile 1: Zeile 1:
 
{{pnc}}__NOTOC__
 
{{pnc}}__NOTOC__
  
===Antibody-dependent enhancement===
+
{{ft|I}}
{{tp|p=32361326|t=2020. Current studies of convalescent plasma therapy for COVID-19 may underestimate risk of antibody-dependent enhancement.|pdf=|usr=008}}
+
*'''[[Antibody-dependent enhancement ]]'''
{{ttp|p=32504046|t=2020. Implications of antibody-dependent enhancement of infection for SARS-CoV-2 countermeasures.|pdf=|usr=007}}
+
*'''[[Herd immunity ]]'''
{{ttp|p=32092539|t=2020. Is COVID-19 receiving ADE from other coronaviruses?|pdf=|usr=}}
+
*'''[[Neutralizing antibodies ]]'''
{{tp|p=32268188|t=ä. It is too soon to attribute ADE to COVID-19 |pdf=|usr=}}
+
*'''[[Innate immunology ]]'''
{{ttp|p=31826992|t=2020. Molecular Mechanism for Antibody-Dependent Enhancement of Coronavirus Entry |pdf=|usr=}}''antibodies target one serotype of viruses but only subneutralize another, leading to antibody-dependend enhancement of the latter viruses.''
+
*'''[[Integrative work ]]''' ''reviews, intertopic''
{{ttp|p=32317716|t=ä. The potential danger of suboptimal antibody responses in COVID-19 |pdf=|usr=}} ade
+
*'''[[Cov2 modulates the immune system ]]'''
{{tp|p=32346094|t=ä. COVID-19 vaccine design: the Janus face of immune enhancement |pdf=|usr=}}
+
*'''[[Immune cell subpopulations ]]'''
{{tp|p=32303697|t=ä. Will we see protection or reinfection in COVID-19?|pdf=|usr=}}
+
*'''[[T cell exhaustion ]]'''
{{tp|p=32438257|t=2020. SARS-CoV-2 and enhancing antibodies |pdf=|usr=}}
+
*'''[[NK cells ]]'''
{{ttp|p=32408068|t=2020. What about the original antigenic sin of the humans versus SARS-CoV-2?|pdf=|usr=}}''the term «original antigenic sin» (OAS) was coined by T. Francis Jr at the Michigan University in the late 1950s to describe patterns of antibody response to influenza vaccination...''
+
{{tp|p=32436320|t=2020. The role of SARS-CoV-2 antibodies in COVID-19: Healing in most, harm at times.|pdf=|usr=007}}
+
{{tp|p=32506725|t=2020. Dengue Fever, COVID-19 (SARS-CoV-2), and Antibody-Dependent Enhancement (ADE): A Perspective.|pdf=|usr=007}}
+
{{tp|p=32529906|t=2020. Serological differentiation between COVID-19 and SARS infections.|pdf=|usr=008}}
+
{{tp|p=32380903|t=2020. Lack of cross-neutralization by SARS patient sera towards SARS-CoV-2.|pdf=|usr=008}}
+
{{tp|p=32426212|t=2020. Cross-reactive Antibody Response between SARS-CoV-2 and SARS-CoV Infections.|pdf=|usr=008}}
+
{{tp|p=32526272|t=2020. Antibody-dependent enhancement and COVID-19: Moving toward acquittal.|pdf=|usr=008}}
+
  
 
+
*'''[[MDSC myeloid-derived suppressor cells]]
 
+
*'''[[Antiviral immune response ]]'''
===Herd immunity===
+
*'''[[Antiviral mediators ]]'''
{{tp|p=32438622|t=2020. Dynamics of Population Immunity Due to the Herd Effect in the COVID-19 Pandemic.|pdf=|usr=007}}
+
*'''[[Immunopathology ]]'''
{{tp|p=32391855|t=2020. COVID-19 and Postinfection Immunity: Limited Evidence, Many Remaining Questions.|pdf=|usr=007}}
+
*'''[[Secondary autoimmunity ]]'''
{{tp|p=32510562|t=2020. Long-term and herd immunity against SARS-CoV-2: implications from current and past knowledge.|pdf=|usr=007}}
+
*'''[[Thymus, Immunosenescence ]]'''
{{tp|p=32418947|t=2020. Does immune privilege result in recovered patients testing positive for COVID-19 again?|pdf=|usr=007}}
+
*'''[[Eosinophils ]]'''
{{tp|p=32372779|t=2020. Do you become immune once you have been infected?|pdf=|usr=}}
+
*'''[[Microbiome ]]'''
{{tp|p=32433946|t=2020. Herd Immunity: Understanding COVID-19.|pdf=|usr=008}}
+
*'''[[Pneumococcal synergism]]''' -new-
{{tp|p=32509257|t=2020. SARS-CoV-2, "common cold" coronaviruses' cross-reactivity and "herd immunity": The razor of Ockham (1285-1347)?|pdf=|usr=008}}
+
*'''[[Bio-misc ]]''' ''on topic biology papers which cannot be indexed by title''
 
+
*'''[[Hematology ]]'''
 
+
*'''[[Cytokine_storm,_hemophagocytic_lymphohistiocytosis,_macrophage_activation_syndrome|Cytokine storm ]]'''
 
+
*'''[[Candidate_Compounds_Covid19 |Immunopharmacology ]]'''
===Neutralizing antibodies===
+
*'''[[Diagnosis_(Laboratory) |Clinical Laboratory Dx]]'''
{{tp|p=32454513|t=2020. Human neutralizing antibodies elicited by SARS-CoV-2 infection.|pdf=|usr=007}}
+
{{tp|p=32454512|t=2020. A human neutralizing antibody targets the receptor binding site of SARS-CoV-2.|pdf=|usr=007}}
+
{{tp|p=32497196|t=2020. Neutralizing Antibodies Responses to SARS-CoV-2 in COVID-19 Inpatients and Convalescent Patients.|pdf=|usr=007}}
+
{{ttp|p=32073157|t=2020. Antibodies to coronaviruses are higher in older compared with younger adults and  binding antibodies are more sensitive than neutralizing antibodies in identifying coronavirus?associated illnesses |pdf=|usr=}}
+
{{tp|p=32515685|t=2020. Dynamic surveillance of SARS-CoV-2 shedding and neutralizing antibody in children with COVID-19.|pdf=|usr=008}}
+
 
+
 
+
===Innate sensing===
+
{{ttp|p=32291557|t=ä. SARS-CoV-2-encoded nucleocapsid protein acts as a viral suppressor of RNA interference in cells |pdf=|usr=}}
+
{{tp|p=32198201|t=2020. Coronavirus endoribonuclease targets viral polyuridine sequences to evade activating host sensors |pdf=|usr=}}
+
{{tp|p=32374430|t=2020. DC/L-SIGNs of Hope in the COVID-19 Pandemic |pdf=|usr=}}
+
{{tp|p=32361001|t=ä. Bioinformatic analysis and identification of single-stranded RNA sequences recognized by TLR7/8 in the SARS-CoV-2, SARS-CoV, and MERS-CoV genomes |pdf=|usr=}}
+
{{tp|p=32248387|t=ä. Use of DAMPs and SAMPs as Therapeutic Targets or Therapeutics: A Note of Caution |pdf=|usr=}}
+
{{ttp|p=32407669|t=ä. Heightened Innate Immune Responses in the Respiratory Tract of COVID-19 Patients |pdf=|usr=}}
+
{{tp|p=32456409|t=2020. A theory on SARS-COV-2 susceptibility: reduced TLR7-activity as a mechanistic link between men, obese and elderly.|pdf=|usr=007}}
+
{{ttp|p=32156572|t=2020. Viroporins and inflammasomes: A key to understand virus-induced inflammation |pdf=|usr=}}
+
{{ttp|p=32454408|t=2020. COVID-19 as a STING disorder with delayed over-secretion of interferon-beta.|pdf=|usr=008}}
+
{{tp|p=32524333|t=2020. COVID 19: a clue from innate immunity.|pdf=|usr=008}}
+
{{tp|p=32464098|t=2020. The Innate Immune System: Fighting on the Front Lines or Fanning the Flames of COVID-19?|pdf=|usr=008}}
+
 
+
 
+
===integrative work===
+
*[https://www.cell.com/action/showPdf?pii=S1074-7613%2820%2930183-7 rev. on covid immunology]
+
{{tp|p=32205856|t=2020. COVID-19 infection: the perspectives on immune responses |pdf=|usr=}}
+
{{tp|p=32359396|t=ä. A Dynamic Immune Response Shapes COVID-19 Progression |pdf=|usr=}}
+
{{tp|p=C7064018|t=ä. Coronavirus infections: Epidemiological, clinical and immunological features and  hypotheses |pdf=|usr=}}
+
{{ttp|p=C7200337|t=ä. Immunology of COVID-19: current state of the science |pdf=|usr=}}
+
{{tp|p=32505227|t=2020. Immunology of COVID-19: Current State of the Science.|pdf=|usr=007}}
+
{{tp|p=32469225|t=2020. COVID-19 and the immune system.|pdf=|usr=007}}
+
{{ttp|p=32436629|t=2020. High COVID-19 virus replication rates, the creation of antigen-antibody immune complexes and indirect haemagglutination resulting in thrombosis.|pdf=|usr=007}}
+
{{tp|p=32507543|t=2020. Spiking Pandemic Potential: Structural and Immunological Aspects of SARS-CoV-2.|pdf=|usr=007}}
+
{{ttp|p=32504757|t=2020. Protective role of ACE2 and its downregulation in SARS-CoV-2 infection leading to Macrophage Activation Syndrome: Therapeutic implications.|pdf=|usr=007}}
+
{{tp|p=32493812|t=2020. Role of Aging and the Immune Response to Respiratory Viral Infections: Potential Implications for COVID-19.|pdf=|usr=007}}
+
{{tp|p=32470151|t=2020. The perplexing question of trained immunity versus adaptive memory in COVID-19.|pdf=|usr=007}}
+
{{tp|p=32472706|t=2020. The Long-Standing History of Corynebacterium Parvum, Immunity and Viruses.|pdf=|usr=007}}
+
{{tp|p=32213336|t=ä. SARS-CoV-2: virus dynamics and host response |pdf=|usr=}}
+
{{tp|p=32437933|t=2020. Viral dynamics in asymptomatic patients with COVID-19.|pdf=|usr=008}}
+
{{tp|p=32407836|t=2020. Longitudinal hematologic and immunologic variations associated with the progression of COVID-19 patients in China.|pdf=|usr=008}}
+
{{tp|p=32498686|t=2020. Immunologic aspects of characteristics, diagnosis, and treatment of coronavirus disease 2019 (COVID-19).|pdf=|usr=008}}
+
{{tp|p=32514817|t=2020. Immune Responses to SARS-CoV, MERS-CoV and SARS-CoV-2.|pdf=|usr=008}}
+
{{tp|p=32460144|t=2020. Altered cytokine levels and immune responses in patients with SARS-CoV-2 infection and related conditions.|pdf=|usr=008}}
+
{{tp|p=32417709|t=2020. Mechanism of inflammatory response in associated comorbidities in COVID-19.|pdf=|usr=008}}
+
{{tp|p=32444400|t=2020. COVID-19 and the nicotinic cholinergic system.|pdf=|usr=008}}
+
{{tp|p=32413330|t=2020. Detection of SARS-CoV-2-Specific Humoral and Cellular Immunity in COVID-19 Convalescent Individuals.|pdf=|usr=008}}
+
{{tp|p=32514174|t=2020. A single-cell atlas of the peripheral immune response in patients with severe COVID-19.|pdf=|usr=008}}
+
{{tp|p=32489708|t=2020. Immune Characteristics of Patients with Coronavirus Disease 2019 (COVID-19).|pdf=|usr=008}}
+
{{tp|p=32396996|t=2020. Immune response to SARS-CoV-2 and mechanisms of immunopathological changes in COVID-19.|pdf=|usr=008}}
+
{{ttp|p=32454136|t=2020. The role of IgA in COVID-19.|pdf=|usr=008}}
+
{{ttp|p=32526273|t=2020. A plea for the pathogenic role of immune complexes in severe Covid-19.|pdf=|usr=008}}
+
 
+
 
+
===covid modulates the immune system===
+
{{ttp|p=32514047|t=2020. Expansion of myeloid-derived suppressor cells in patients with severe coronavirus disease (COVID-19).|pdf=|usr=008}}
+
{{ttp|p=32479746|t=2020. Host-Viral Infection Maps Reveal Signatures of Severe COVID-19 Patients.|pdf=|usr=008}}
+
{{ttp|p=32529952|t=2020. SARS-CoV-2 nsp13, nsp14, nsp15 and orf6 function as potent interferon antagonists.|pdf=|usr=008}}
+
{{tp|p=32364527|t=2020. Immune environment modulation in pneumonia patients caused by coronavirus: SARS-CoV, MERS-CoV and SARS-CoV-2 |pdf=|usr=}}
+
{{tp|p=32172672|t=2020. A tug-of-war between severe acute respiratory syndrome coronavirus 2 and host antiviral defence: lessons from other pathogenic viruses |pdf=|usr=}}
+
{{tp|p=32315725|t=ä. Suppressed T cell-mediated immunity in patients with COVID-19: a clinical retrospective study in Wuhan, China |pdf=|usr=}}
+
{{ttp|p=32355328|t=ä. Impaired interferon signature in severe COVID-19 |pdf=|usr=}}
+
{{tp|p=32375560|t=2020. SARS-CoV-2-Induced Immune Dysregulation and Myocardial Injury Risk in China: Insights from the ERS-COVID-19 Study |pdf=|usr=}}
+
{{tp|p=32376308|t=ä. Lymphopenia is associated with severe coronavirus disease 2019 (COVID-19) infections: A systemic review and meta-analysis |pdf=|usr=}}
+
{{ttp|p=32236983|t=2020. Why the immune system fails to mount an adaptive immune response to a COVID-19 infection |pdf=|usr=}}
+
{{ttp|p=32286536|t=ä. Coronaviruses hijack the complement system |pdf=|usr=}}''host complement activator MASP2 as a target of the N protein of all three viruses''
+
{{tp|p=32463803|t=2020. Impaired immune cell cytotoxicity in severe COVID-19 is IL-6 dependent.|pdf=|usr=007}}
+
{{tp|p=32492165|t=2020. Clinical and Immune Features of Hospitalized Pediatric Patients With Coronavirus Disease 2019 (COVID-19) in Wuhan, China.|pdf=|usr=007}}
+
{{tp|p=32514592|t=2020. Severe COVID-19 is associated with deep and sustained multifaceted cellular immunosuppression.|pdf=|usr=008}}
+
{{tp|p=32456696|t=2020. COVID-19 patients exhibit less pronounced immune suppression compared with bacterial septic shock patients.|pdf=|usr=008}}
+
{{tp|p=32502135|t=2020. Reduced monocytic HLA-DR expression indicates immunosuppression in critically ill COVID-19 patients.|pdf=|usr=008}}
+
{{tp|p=32532524|t=2020. SARS-CoV-2-A Tough Opponent for the Immune System.|pdf=|usr=008}}
+
{{tp|p=32416070|t=2020. Imbalanced Host Response to SARS-CoV-2 Drives Development of COVID-19.|pdf=|usr=008}}
+
{{tp|p=32513989|t=2020. The inhibition of IL-2/IL-2R gives rise to CD8(+) T cell and lymphocyte decrease through JAK1-STAT5 in critical patients with COVID-19 pneumonia.|pdf=|usr=008}}
+
 
+
 
+
===immune cell subpopulations===
+
{{tp|p=32282871|t=ä. Inflammatory Response Cells During Acute Respiratory Distress Syndrome in Patients With Coronavirus Disease 2019 (COVID-19) |pdf=|usr=}}
+
{{tp|p=32325421|t=2020. Increased expression of CD8 marker on T-cells in COVID-19 patients |pdf=|usr=}}
+
{{tp|p=32377375|t=2020. Immune cell profiling of COVID-19 patients in the recovery stage by single-cell sequencing |pdf=|usr=}}
+
{{tp|p=32346099|t=ä. High-dimensional immune profiling by mass cytometry revealed immunosuppression and dysfunction of immunity in COVID-19 patients |pdf=|usr=}}
+
{{tp|p=32339487|t=2020. Abnormalities of peripheral blood system in patients with COVID-19 in Wenzhou, China |pdf=|usr=}}
+
{{tp|p=32361250|t=2020. Longitudinal characteristics of lymphocyte responses and cytokine profiles in the peripheral blood of SARS-CoV-2 infected patients |pdf=|usr=}}
+
{{tp|p=32228226|t=2020. Transcriptomic characteristics of bronchoalveolar lavage fluid and peripheral blood mononuclear cells in COVID-19 patients |pdf=|usr=}}
+
{{tp|p=32196410|t=2020. Hypothesis for potential pathogenesis of SARS-CoV-2 infection?a review of immune  changes in patients with viral pneumonia |pdf=|usr=}}
+
{{tp|p=32333914|t=ä. A possible role for B cells in COVID-19?: Lesson from patients with Agammaglobulinemia |pdf=|usr=}}
+
{{tp|p=32344320|t=ä. The clinical course and its correlated immune status in COVID-19 pneumonia |pdf=|usr=}}
+
{{tp|p=32325129|t=ä. The profile of peripheral blood lymphocyte subsets and serum cytokines in children with 2019 novel coronavirus pneumonia |pdf=|usr=}}
+
{{tp|p=32283159|t=ä. Lymphocyte subset (CD4+, CD8+) counts reflect the severity of infection and predict the clinical outcomes in patients with COVID-19 |pdf=|usr=}}
+
{{tp|p=32227123|t=ä. Characteristics of Peripheral Lymphocyte Subset Alteration in COVID-19 Pneumonia |pdf=|usr=}}
+
{{tp|p=32343510|t=2020. COVID-19: are T lymphocytes simply watching?|pdf=|usr=}}
+
{{tp|p=32379887|t=ä. T cell subset counts in peripheral blood can be used as discriminatory biomarkers for diagnosis and severity prediction of COVID-19 |pdf=|usr=}}
+
{{tp|p=32297671|t=2020. Relationships among lymphocyte subsets, cytokines, and the pulmonary inflammation index in coronavirus (COVID-19) infected patients |pdf=|usr=}}
+
{{tp|p=32352397|t=2020. The hemocyte counts as a potential biomarker for predicting disease progression in COVID-19: a retrospective study |pdf=|usr=}}
+
{{tp|p=32379199|t=2020. A Typical Case of Critically Ill Infant of Coronavirus Disease 2019 With Persistent Reduction of T Lymphocytes |pdf=|usr=}}
+
{{tp|p=32296069|t=2020. Lymphopenia predicts disease severity of COVID-19: a descriptive and predictive study |pdf=|usr=}}
+
{{tp|p=32407057|t=2020. Peripheral lymphocyte subset monitoring in COVID19 patients: a prospective Italian real-life case series.|pdf=|usr=007}}
+
{{tp|p=32297828|t=2020. Correlation Between Relative Nasopharyngeal Virus RNA Load and Lymphocyte Count Disease Severity in Patients with COVID-19 |pdf=|usr=}}
+
{{tp|p=32370466|t=2020.  Characteristics of peripheral blood leukocyte differential counts in patients with COVID-19  |pdf=|usr=}}
+
{{tp|p=32114745|t=2020.  Characteristics of peripheral blood leukocyte differential counts in patients with COVID-19  |pdf=|usr=}}
+
{{tp|p=32377375|t=2020. Immune cell profiling of COVID-19 patients in the recovery stage by single-cell sequencing |pdf=|usr=}}
+
{{tp|p=32361250|t=2020. Longitudinal characteristics of lymphocyte responses and cytokine profiles in the peripheral blood of SARS-CoV-2 infected patients |pdf=|usr=}}
+
{{ttp|p=32376308|t=2020. Lymphopenia is associated with severe coronavirus disease 2019 (COVID-19) infections: A systemic review and meta-analysis |pdf=|usr=}}
+
{{tp|p=32458561|t=2020. Lymphopenia in COVID-19: Therapeutic opportunities.|pdf=|usr=007}}
+
{{tp|p=32420610|t=2020. Temporal changes in immune blood cell parameters in COVID-19 infection and recovery from severe infection.|pdf=|usr=007}}
+
{{tp|p=32470153|t=2020. Characteristics of inflammatory factors and lymphocyte subsets in patients with severe COVID-19.|pdf=|usr=007}}
+
{{tp|p=32474608|t=2020. Decreased B cells on admission was associated with prolonged viral RNA shedding from respiratory tract in Coronavirus Disease 2019: a case control study.|pdf=|usr=007}}
+
{{tp|p=32483488|t=2020. Lymphopenia in severe coronavirus disease-2019 (COVID-19): systematic review and meta-analysis.|pdf=|usr=008}}
+
{{tp|p=32382776|t=2020. Signals of Th2 immune response from COVID-19 patients requiring intensive care.|pdf=|usr=008}}
+
{{tp|p=32417210|t=2020. The underlying changes and predicting role of peripheral blood inflammatory cells in severe COVID-19 patients: A sentinel?|pdf=|usr=008}}
+
{{tp|p=32405080|t=2020. Decreased T cell populations contribute to the increased severity of COVID-19.|pdf=|usr=008}}
+
{{tp|p=32407466|t=2020. An inflammatory profile correlates with decreased frequency of cytotoxic cells in COVID-19.|pdf=|usr=008}}
+
 
+
===t cell exhaustion===
+
{{tp|p=32249845|t=ä. Fighting COVID-19 exhausts T cells |pdf=|usr=}}
+
{{tp|p=32479985|t=2020. Selective CD8 cell reduction by SARS-CoV-2 is associated with a worse prognosis and systemic inflammation in COVID-19 patients.|pdf=|usr=008}}
+
{{ttp|p=32203188|t=ä. Functional exhaustion of antiviral lymphocytes in COVID-19 patients |pdf=|usr=}}
+
{{ttp|p=32203186|t=ä. Elevated exhaustion levels and reduced functional diversity of T cells in peripheral blood may predict severe progression in COVID-19 patients |pdf=|usr=}}
+
{{ttp|p=32203188|t=2020. Functional exhaustion of antiviral lymphocytes in COVID-19 patients |pdf=|usr=}}
+
{{ttp|p=32203186|t=2020. Elevated exhaustion levels and reduced functional diversity of T cells in peripheral blood may predict severe progression in COVID-19 patients |pdf=|usr=}}
+
{{tp|p=32414395|t=2020. COVID-19: room for treating T cell exhaustion?|pdf=|usr=008}}
+
{{tp|p=32425950|t=2020. Reduction and Functional Exhaustion of T Cells in Patients With Coronavirus Disease 2019 (COVID-19).|pdf=|usr=008}}
+
 
+
 
+
 
+
 
+
===nk cells===
+
{{tp|p=32382127|t=ä. NKG2A and COVID-19: another brick in the wall |pdf=|usr=}}
+
{{tp|p=32344314|t=2020. Innate immunity in COVID-19 patients mediated by NKG2A receptors, and potential treatment using Monalizumab, Cholroquine, and antiviral agents |pdf=|usr=}}
+
 
+
 
+
===plasmacytoid dendritic cells===
+
{{tp|p=32298486|t=2020. Plasmacytoid lymphocytes in SARS-CoV-2 infection (Covid-19) |pdf=|usr=}}
+
 
+
 
+
===antiviral immune response===
+
{{tp|p=32280952|t=ä. Good IgA bad IgG in SARS-CoV-2 infection?|pdf=|usr=}}
+
{{tp|p=32353870|t=2020. The many faces of the anti-COVID immune response |pdf=|usr=}}
+
{{tp|p=32358956|t=ä. Longitudinal Change of SARS-Cov2 Antibodies in Patients with COVID-19 |pdf=|usr=}}
+
{{tp|p=31981224|t=2020. Coronavirus infections and immune responses |pdf=|usr=}}
+
{{tp|p=32198005|t=2020. A case of COVID-19 and pneumonia returning from Macau in Taiwan: Clinical course  and anti-SARS-CoV-2 IgG dynamic |pdf=|usr=}}
+
{{tp|p=32284614|t=ä. Breadth of concomitant immune responses prior to patient recovery: a case report  of non-severe COVID-19 |pdf=|usr=}}
+
{{tp|p=32355329|t=ä. SARS-CoV-2-reactive T cells in patients and healthy donors |pdf=|usr=}}
+
{{tp|p=32346091|t=ä. Neutralizing antibody response in mild COVID-19 |pdf=|usr=}}
+
{{tp|p=32356908|t=2020. Mathematical modeling of interaction between innate and adaptive immune responses in COVID-19 and implications for viral pathogenesis |pdf=|usr=}}
+
{{ttp|p=32343415|t=2020. Long-term coexistence of SARS-CoV-2 with antibody response in COVID-19 patients |pdf=|usr=}}
+
{{tp|p=32330332|t=2020. SARS-CoV-2 infection in children - Understanding the immune responses and controlling the pandemic |pdf=|usr=}}
+
{{tp|p=32267987|t=2020. Immune responses and pathogenesis of SARS?CoV?2 during an outbreak in Iran: Comparison with SARS and MERS |pdf=|usr=}}
+
{{tp|p=32348715|t=2020. B Cells, Viruses, and the SARS-CoV-2/COVID-19 Pandemic of 2020 |pdf=|usr=}}
+
{{tp|p=32382126|t=ä. Protective humoral immunity in SARS-CoV-2 infected pediatric patients |pdf=|usr=}}
+
{{tp|p=32200654|t=2020. Time Kinetics of Viral Clearance and Resolution of Symptoms in Novel Coronavirus  Infection |pdf=|usr=}}
+
{{tp|p=32476607|t=2020. Delayed specific IgM antibody responses observed among COVID-19 patients with severe progression.|pdf=|usr=007}}
+
{{tp|p=32449333|t=2020. (+)Ability of the immune system to fight viruses highlighted by cytometry and TCR clonotype assessments: lessons taken prior to COVID-19 virus pandemic outbreak.|pdf=|usr=007}}
+
{{tp|p=32430094|t=2020. The dynamics of humoral immune responses following SARS-CoV-2 infection and the potential for reinfection.|pdf=|usr=007}}
+
{{tp|p=32467617|t=2020. Serum IgA, IgM, and IgG responses in COVID-19.|pdf=|usr=007}}
+
{{ttp|p=32467616|t=2020. More bricks in the wall against SARS-CoV-2 infection: involvement of gamma9delta2 T cells.|pdf=|usr=007}}
+
{{ttp|p=32463434|t=2020. Metatranscriptomic Characterization of COVID-19 Identified A Host Transcriptional Classifier Associated With Immune Signaling.|pdf=|usr=007}}
+
{{tp|p=32398307|t=2020. Distinct features of SARS-CoV-2-specific IgA response in COVID-19 patients.|pdf=|usr=008}}
+
{{tp|p=32425634|t=2020. The dynamics of antibodies to SARS-CoV-2 in a case of SARS-CoV-2 infection.|pdf=|usr=008}}
+
{{tp|p=32383183|t=2020. A comparison study of SARS-CoV-2 IgG antibody between male and female COVID-19 patients: A possible reason underlying different outcome between sex.|pdf=|usr=008}}{{tp|p=32521002|t=2020. Antibody profiles in mild and severe cases of COVID-19.|pdf=|usr=008}}
+
{{tp|p=32399213|t=2020. Dynamics of peripheral immune cells and their HLA-G and receptor expressions in a patient suffering from critical COVID-19 pneumonia to convalescence.|pdf=|usr=008}}
+
{{tp|p=32515684|t=2020. Patterns of IgG and IgM antibody response in COVID-19 patients.|pdf=|usr=008}}
+
{{ttp|p=32425955|t=2020. Potential SARS-CoV-2 Preimmune IgM Epitopes.|pdf=|usr=008}}
+
{{tp|p=32439770|t=2020. T cells found in coronavirus patients 'bode well' for long-term immunity.|pdf=|usr=008}}
+
{{ttp|p=32473127|t=2020. Targets of T Cell Responses to SARS-CoV-2 Coronavirus in Humans with COVID-19 Disease and Unexposed Individuals.|pdf=|usr=008}}
+
{{tp|p=32513850|t=2020. Early Insights into Immune Responses during COVID-19.|pdf=|usr=008}}
+
 
+
 
+
 
+
===antiviral mediators===
+
{{tp|p=32422144|t=2020. Perforin and resistance to SARS coronavirus 2.|pdf=|usr=008}}
+
{{ttp|p=32437749|t=2020. Human Intestinal Defensin 5 Inhibits SARS-CoV-2 Invasion by Cloaking ACE2.|pdf=|usr=008}}
+
 
+
 
+
===mediators===
+
{{tp|p=32360285|t=ä. Type I IFN immunoprofiling in COVID-19 patients |pdf=|usr=}}
+
{{ttp|p=32376393|t=ä. Interleukin-17A (IL-17A), a key molecule of innate and adaptive immunity, and its potential involvement in COVID-19-related thrombotic and vascular mechanisms |pdf=|usr=}}
+
{{ttp|p=32305501|t=ä. The Potential Role of Th17 Immune Responses in Coronavirus Immunopathology and Vaccine-induced Immune Enhancement |pdf=|usr=}}
+
{{tp|p=30715745|t=2019. (+)Th17 serum cytokines in relation to laboratory?confirmed respiratory viral infection: A pilot study |pdf=|usr=}}
+
{{tp|p=32414693|t=2020. Interleukin-6 levels in children developing SARS-CoV-2 infection |pdf=|usr=}}
+
{{ttp|p=32421281|t=2020. Is there relationship between SARS-CoV 2 and the complement C3 and C4?|pdf=|usr=007}}
+
{{tp|p=32437622|t=2020. Complement Activation During Critical Illness: Current Findings and an Outlook in the Era of COVID-19.|pdf=|usr=007}}
+
{{tp|p=32475759|t=2020. IL-6: Relevance for immunopathology of SARS-CoV-2.|pdf=|usr=008}}
+
 
+
 
+
 
+
===immunopathology===
+
{{tp|p=32371101|t=ä. The correlation between SARS-CoV-2 infection and rheumatic disease |pdf=|usr=}}
+
{{tp|p=32205186|t=2020. COVID-19 infection and rheumatoid arthritis: Faraway, so close!|pdf=|usr=}}
+
{{tp|p=32308263|t=2020. CoViD-19 Immunopathology and Immunotherapy |pdf=|usr=}}
+
{{tp|p=32320677|t=ä. Complex Immune Dysregulation in COVID-19 Patients with Severe Respiratory Failure |pdf=|usr=}}
+
{{tp|p=32161940|t=ä. Dysregulation of immune response in patients with COVID-19 in Wuhan, China |pdf=|usr=}}
+
{{tp|p=32282863|t=ä. Molecular immune pathogenesis and diagnosis of COVID-19 |pdf=|usr=}}
+
{{tp|p=32321823|t=2020. COVID-19: an Immunopathological View |pdf=|usr=}}
+
{{tp|p=32273594|t=ä. COVID-19: immunopathology and its implications for therapy |pdf=|usr=}}
+
{{tp|p=32303696|t=ä. Macrophages: a Trojan horse in COVID-19?|pdf=|usr=}}
+
{{ttp|p=32376901|t=ä. Pathological inflammation in patients with COVID-19: a key role for monocytes and macrophages |pdf=|usr=}}
+
{{tp|p=32423059|t=2020. Recent Insight into SARS-CoV2 Immunopathology and Rationale for Potential Treatment and Preventive Strategies in COVID-19.|pdf=|usr=007}}
+
{{tp|p=32485101|t=2020. Vascular Endothelial Growth Factor (VEGF) as a Vital Target for Brain Inflammation during the COVID-19 Outbreak.|pdf=|usr=007}}
+
{{tp|p=32423917|t=2020. COVID-19 as an Acute Inflammatory Disease.|pdf=|usr=007}}
+
{{ttp|p=32512289|t=2020. Neutralizing antibodies mediate virus-immune pathology of COVID-19.|pdf=|usr=007}}
+
{{tp|p=32398875|t=2020. Single-cell landscape of bronchoalveolar immune cells in patients with COVID-19.|pdf=|usr=007}}
+
{{tp|p=32391668|t=2020. [Dynamic inflammatory response in a critically ill COVID-19 patient treated with corticosteroids].|pdf=|usr=007}}
+
{{ttp|p=32498376|t=2020. Neutrophils and Neutrophil Extracellular Traps Drive Necroinflammation in COVID-19.|pdf=|usr=007}}
+
{{tp|p=32460357|t=2020. Immunopathological characteristics of coronavirus disease 2019 cases in Guangzhou, China.|pdf=|usr=007}}
+
{{ttp|p=32492530|t=2020. Aberrant hyperactivation of cytotoxic T-cell as a potential determinant of COVID-19 severity.|pdf=|usr=008}}
+
{{tp|p=32389590|t=2020. COVID-19: Unanswered questions on immune response and pathogenesis.|pdf=|usr=008}}
+
{{tp|p=32422146|t=2020. Type 2 inflammation modulates ACE2 and TMPRSS2 in airway epithelial cells.|pdf=|usr=008}}
+
{{tp|p=32521376|t=2020. SARS-CoV-2 (Covid-19): Interferon-epsilon may be responsible of decreased mortality in females.|pdf=|usr=008}}
+
{{tp|p=32470851|t=2020. Role of oxidized LDL-induced "trained macrophages" in the pathogenesis of COVID-19 and benefits of pioglitazone: A hypothesis.|pdf=|usr=008}}
+
{{tp|p=32454103|t=2020. Type I astrocytes and microglia induce a cytokine response in an encephalitic murine coronavirus infection.|pdf=|usr=008}}
+
{{tp|p=32398804|t=2020. Is aberrant CD8+ T cell activation by hypertension associated with cardiac injury in severe cases of COVID-19?|pdf=|usr=008}}
+
 
+
 
+
===secondary autoimmunity===
+
{{tp|p=32292901|t=2020. Pathogenic priming likely contributes to serious and critical illness and mortality in COVID-19 via autoimmunity |pdf=|usr=}}
+
{{tp|p=32220633|t=2020. Could Sars-coronavirus-2 trigger autoimmune and/or autoinflammatory mechanisms in genetically predisposed subjects?|pdf=|usr=}}
+
{{tp|p=32315487|t=2020. Clinical and Autoimmune Characteristics of Severe and Critical Cases of COVID-19 |pdf=|usr=}}
+
{{ttp|p=32314313|t=2020. Is COVID-19 a proteiform disease inducing also molecular mimicry phenomena?|pdf=|usr=}}
+
{{tp|p=32389543|t=ä. COVID-19 and molecular mimicry: The Columbus? egg?|pdf=|usr=}}
+
{{tp|p=32444414|t=2020. Antibodies against immunogenic epitopes with high sequence identity to SARS-CoV-2 in patients with autoimmune dermatomyositis.|pdf=|usr=007}}
+
{{ttp|p=32535095|t=2020. Molecular mimicry may explain multi-organ damage in COVID-19.|pdf=|usr=008}}
+
{{tp|p=32535093|t=2020. Covid-19 and autoimmunity.|pdf=|usr=008}}
+
{{tp|p=32461193|t=2020. Potential antigenic cross-reactivity between SARS-CoV-2 and human tissue with a possible link to an increase in autoimmune diseases.|pdf=|usr=008}}
+
 
+
 
+
===Thymus===
+
{{tp|p=32340873|t=ä. Reply: Thymopoiesis, inflamm-aging, and COVID-19 phenotype |pdf=|usr=}}
+
{{tp|p=32317217|t=ä. Role of thymopoiesis and inflamm-aging in COVID-19 phenotype |pdf=|usr=}}
+
 
+
 
+
===Eosinopenia, Eosinophilia===
+
{{tp|p=32368728|t=ä. Eosinopenia and elevated C-reactive protein facilitate triage of COVID-19 patients in fever clinic: a retrospective case-control study |pdf=|usr=}}
+
{{tp|p=32344056|t=ä. Eosinophil Responses During COVID-19 Infections and Coronavirus Vaccination |pdf=|usr=}}
+
{{tp|p=32369190|t=2020. COVID-19, chronic inflammatory respiratory diseases and eosinophils - Observationsfrom reported clinical case series |pdf=|usr=}}
+
{{ttp|p=32315429|t=ä. Eosinophil count in severe coronavirus disease 2019 (COVID-19) |pdf=|usr=}}
+
{{tp|p=32315421|t=ä. Response letter to Eosinophil count in severe coronavirus disease 2019 (COVID-19) |pdf=|usr=}}
+
{{tp|p=32390402|t=2020. SARS-CoV-2 and Eosinophilia.|pdf=|usr=007}}
+
 
+
 
+
===microbiome===
+
{{tp|p=32497191|t=2020. Alterations of the Gut Microbiota in Patients with COVID-19 or H1N1 Influenza.|pdf=|usr=007}}
+
{{ttp|p=32426999|t=2020. Gnotobiotic Rats Reveal That Gut Microbiota Regulates Colonic mRNA of Ace2, the Receptor for SARS-CoV-2 Infectivity.|pdf=|usr=007}}
+
{{tp|p=32432790|t=2020. Editorial - COVID-19 and the microbiota: new kids on the block.|pdf=|usr=008}}
+
{{tp|p=32442562|t=2020. Alterations in Gut Microbiota of Patients With COVID-19 During Time of Hospitalization.|pdf=|usr=008}}
+
 
+
 
+
'''some other papers'''
+
{{tp|p=32215589|t=2020. Antibodies in Infants Born to Mothers With COVID-19 Pneumonia |pdf=|usr=}}
+
{{tp|p=32504103|t=2020. Ten things we learned about COVID-19.|pdf=|usr=008}}
+
{{tp|p=32494929|t=2020. COVID-19: 10 things I wished I'd known some months ago.|pdf=|usr=008}}
+
{{tp|p=32437740|t=2020. The immunologic status of newborns born to SARS-CoV-2-infected mothers in Wuhan, China.|pdf=|usr=008}}
+
{{tp|p=32510470|t=2020. Is innate immunity our best weapon for flattening the curve?|pdf=|usr=008}}
+
{{tp|p=32464309|t=2020. Type I interferons can be detected in respiratory swabs from SARS-Cov-2 infected patients.|pdf=|usr=008}}
+
{{tp|p=32398780|t=2020. The role of the exposome in promoting resilience or susceptibility after SARS-CoV-2 infection.|pdf=|usr=008}}
+
{{tp|p=32534002|t=2020. Cancer population may be paradoxically protected from severe manifestations of COVID-19.|pdf=|usr=008}}
+
{{tp|p=32360499|t=2020. Comparative seasonalities of influenza A, B and 'common cold' coronaviruses - setting the scene for SARS-CoV-2 infections and possible unexpected host immune interactions.|pdf=|usr=008}}
+
{{tp|p=32283147|t=2020. Prolonged virus shedding even after seroconversion in a patient with COVID-19.|pdf=|usr=008}}
+
{{ttp|p=32461703|t=2020. Mechanobiology predicts raft formations triggered by ligand-receptor activity across the cell membrane.|pdf=|usr=008}}
+
{{tp|p=32412125|t=2020. Androgen sensitivity gateway to COVID-19 disease severity.|pdf=|usr=008}}
+
{{tp|p=32393438|t=2020. Intelligent classification of platelet aggregates by agonist type.|pdf=|usr=008}}
+
{{tp|p=32444797|t=2020. BBMRI-ERIC's contributions to research and knowledge exchange on COVID-19.|pdf=|usr=008}}
+
{{tp|p=32415272|t=2020. Connecting data, tools and people across Europe: ELIXIR's response to the COVID-19 pandemic.|pdf=|usr=008}}
+
{{tp|p=32376989|t=2020. The VODAN IN: support of a FAIR-based infrastructure for COVID-19.|pdf=|usr=008}}
+
{{tp|p=32335973|t=2020. Of mice and men: COVID-19 challenges translational neuroscience.|pdf=|usr=008}}
+
{{tp|p=32510005|t=2020. COVID-19 target: A specific target for novel coronavirus detection.|pdf=|usr=008}}
+
{{tp|p=32526937|t=2020. Analysis of the Hosts and Transmission Paths of SARS-CoV-2 in the COVID-19 Outbreak.|pdf=|usr=008}}
+
{{tp|p=32437706|t=2020. Evolution of severe acute respiratory syndrome coronavirus 2 RNA test results in a patient with fatal coronavirus disease 2019: a case report.|pdf=|usr=008}}
+
{{tp|p=32392464|t=2020. SARS-CoV-2: Combating Coronavirus Emergence.|pdf=|usr=008}}
+
{{tp|p=32473952|t=2020. SARS-CoV-2: The viral shedding vs infectivity dilemma.|pdf=|usr=008}}
+
{{tp|p=32450246|t=2020. Molecular epidemiology of SARS-CoV-2 in Faisalabad, Pakistan: A real-world clinical experience.|pdf=|usr=008}}
+
{{tp|p=32405281|t=2020. Sars-CoV-2 and black population: ACE2 as shield or blade?|pdf=|usr=008}}
+
{{tp|p=32524515|t=2020. Perceived versus proven SARS-CoV-2-specific immune responses in health-care professionals.|pdf=|usr=008}}
+
{{tp|p=32485251|t=2020. A recombinant Lactobacillus plantarum strain expressing the spike protein of SARS-CoV-2.|pdf=|usr=008}}
+
{{tp|p=31896597|t=2020. Host AAA+ ATPase TER94 Plays Critical Roles in Building the Baculovirus Viral Replication Factory and Virion Morphogenesis.|pdf=|usr=008}}
+
{{tp|p=32528156|t=2020. Ten recommendations for supporting open pathogen genomic analysis in public health.|pdf=|usr=008}}
+
{{tp|p=32467367|t=2020. Scientists put survivors' blood plasma to the test.|pdf=|usr=008}}
+
{{tp|p=32496715|t=2020. [Etiology of epidemic outbreaks COVID-19 on Wuhan, Hubei province, Chinese People Republic associated with 2019-nCoV (Nidovirales, Coronaviridae, Coronavirinae, Betacoronavirus, Subgenus Sarbecovirus): lessons of SARS-CoV outbreak.]|pdf=|usr=007}}
+
{{tp|p=32455617|t=2020. Novel Dynamic Structures of 2019-nCoV with Nonlocal Operator via Powerful Computational Technique.|pdf=|usr=007}}
+
{{tp|p=32512133|t=2020. Poor-sleep is associated with slow recovery from lymphopenia and an increased need for ICU care in hospitalized patients with COVID-19: A retrospective cohort study.|pdf=|usr=007}}
+
{{tp|p=32512089|t=2020. Corona virus versus existence of human on the earth: A computational and biophysical approach.|pdf=|usr=007}}
+
{{tp|p=32470223|t=2020. COVID-19: Structural Predictions of Viral Success.|pdf=|usr=007}}
+
{{tp|p=32423901|t=2020. How covid-19 is accelerating the threat of antimicrobial resistance.|pdf=|usr=007}}
+
{{tp|p=32504123|t=2020. COVID-19 research: toxicological input urgently needed!|pdf=|usr=007}}
+
{{tp|p=32412787|t=2020. Bronchoscopy in COVID-19 Patients with Invasive Mechanical Ventilation: A Center Experience.|pdf=|usr=007}}
+
{{tp|p=32213337|t=ä. Temporal profiles of viral load in posterior oropharyngeal saliva samples and serum antibody responses during infection by SARS-CoV-2: an observational cohort  study |pdf=|usr=}}
+
{{tp|p=32360743|t=ä. Lower detection rates of SARS-COV2 antibodies in cancer patients vs healthcare workers after symptomatic COVID-19 |pdf=|usr=}}
+
{{tp|p=32292530|t=2020. Respiratory diseases, allergy and COVID-19 infection. First news from Wuhan|pdf=|usr=}}
+
{{tp|p=32346093|t=ä. The trinity of COVID-19: immunity, inflammation and intervention |pdf=|usr=}}
+
{{tp|p=32348636|t=2020. Hyposalivation as a potential risk for SARS-CoV-2 infection: Inhibitory role of saliva |pdf=|usr=}}
+
{{tp|p=32235915|t=ä. COVID-19: a new challenge for human beings |pdf=|usr=}}
+
{{ttp|p=32359201|t=2020. The first, holistic immunological model of COVID-19: implications for prevention, diagnosis, and public health measures |pdf=|usr=}}
+
{{tp|p=32376309|t=2020. Viral kinetics of SARS-CoV-2 in asymptomatic carriers and presymptomatic patients |pdf=|usr=}}
+
{{tp|p=32388390|t=2020. The powerful immune system against powerful COVID-19: A hypothesis |pdf=|usr=}}
+
{{tp|p=32372807|t=2020. The fever paradox |pdf=|usr=}}
+
{{tp|p=32220035|t=2020. SARS-CoV-2: What do we know so far?|pdf=|usr=008}}
+
{{tp|p=32534452|t=2020. From causes of aging to death from COVID-19.|pdf=|usr=008}}
+
{{tp|p=32489698|t=2020. COVID-19 Virulence in Aged Patients Might Be Impacted by the Host Cellular MicroRNAs Abundance/Profile.|pdf=|usr=008}}
+
{{tp|p=32401346|t=2020. SARS-CoV-2 immunogenicity at the crossroads.|pdf=|usr=008}}
+
{{tp|p=32053148|t=2020. Three Emerging Coronaviruses in Two Decades.|pdf=|usr=008}}
+
{{tp|p=32516444|t=2020. Immunological environment shifts during pregnancy may affect the risk of developing severe complications in COVID-19 patients.|pdf=|usr=008}}
+
{{tp|p=32439309|t=2020. Revision narrativa sobre la respuesta inmunitaria frente a coronavirus: descripcion general, aplicabilidad para SARS-COV-2 e implicaciones terapeuticas.|pdf=|usr=008}}
+
 
+
{{tp|p=32458383|t=2020. On barring the vascular gateway against severe COVID-19 disease.|pdf=|usr=008}}
+
{{tp|p=32526483|t=2020. COVID 19 and brain crosstalks.|pdf=|usr=008}}
+
{{tp|p=32533824|t=2020. Tuberculosis and type 2 Diabetes Mellitus: an inflammatory danger signal in the time of COVID-19.|pdf=|usr=008}}
+
{{tp|p=32425712|t=2020. Evidence Supporting a Phased Immuno-physiological Approach to COVID-19 From Prevention Through Recovery.|pdf=|usr=008}}
+

Aktuelle Version vom 25. April 2021, 17:17 Uhr

coviki.org collects the really good Ideas and the scientific Record on Covid-19 Virus.

 I further streaming-in related content is here
Meine Werkzeuge
Namensräume
Varianten
Aktionen
Navigation
Werkzeuge
Blogverzeichnis - Blog Verzeichnis bloggerei.deBlogverzeichnis