|
|
(26 dazwischenliegende Versionen von einem Benutzer werden nicht angezeigt) |
Zeile 1: |
Zeile 1: |
− | {{pnc}} | + | {{pnc}}__NOTOC__ |
| | | |
− | '''Antibody-dependent enhancement''' | + | {{ft|I}} |
− | {{ttp|p=32504046|t=2020. Implications of antibody-dependent enhancement of infection for SARS-CoV-2 countermeasures.|pdf=|usr=007}}
| + | *'''[[Antibody-dependent enhancement ]]''' |
− | {{ttp|p=32092539|t=2020. Is COVID-19 receiving ADE from other coronaviruses?|pdf=|usr=}}
| + | *'''[[Herd immunity ]]''' |
− | {{tp|p=32268188|t=ä. It is too soon to attribute ADE to COVID-19 |pdf=|usr=}}
| + | *'''[[Neutralizing antibodies ]]''' |
− | {{ttp|p=31826992|t=2020. Molecular Mechanism for Antibody-Dependent Enhancement of Coronavirus Entry |pdf=|usr=}}''antibodies target one serotype of viruses but only subneutralize another, leading to antibody-dependend enhancement of the latter viruses.''
| + | *'''[[Innate immunology ]]''' |
− | {{ttp|p=32317716|t=ä. The potential danger of suboptimal antibody responses in COVID-19 |pdf=|usr=}} ade
| + | *'''[[Integrative work ]]''' ''reviews, intertopic'' |
− | {{tp|p=32346094|t=ä. COVID-19 vaccine design: the Janus face of immune enhancement |pdf=|usr=}}
| + | *'''[[Cov2 modulates the immune system ]]''' |
− | {{tp|p=32303697|t=ä. Will we see protection or reinfection in COVID-19?|pdf=|usr=}}
| + | *'''[[Immune cell subpopulations ]]''' |
− | {{tp|p=32438257|t=2020. SARS-CoV-2 and enhancing antibodies |pdf=|usr=}}
| + | *'''[[T cell exhaustion ]]''' |
− | {{ttp|p=32408068|t=2020. What about the original antigenic sin of the humans versus SARS-CoV-2?|pdf=|usr=}}''the term «original antigenic sin» (OAS) was coined by T. Francis Jr at the Michigan University in the late 1950s to describe patterns of antibody response to influenza vaccination...''
| + | *'''[[NK cells ]]''' |
− | {{tp|p=32436320|t=2020. The role of SARS-CoV-2 antibodies in COVID-19: Healing in most, harm at times.|pdf=|usr=007}}
| + | |
− | {{tp|p=32506725|t=2020. Dengue Fever, COVID-19 (SARS-CoV-2), and Antibody-Dependent Enhancement (ADE): A Perspective.|pdf=|usr=007}}
| + | |
| | | |
− | | + | *'''[[MDSC myeloid-derived suppressor cells]] |
− | '''Herd immunity''' | + | *'''[[Antiviral immune response ]]''' |
− | {{tp|p=32438622|t=2020. Dynamics of Population Immunity Due to the Herd Effect in the COVID-19 Pandemic.|pdf=|usr=007}}
| + | *'''[[Antiviral mediators ]]''' |
− | {{tp|p=32391855|t=2020. COVID-19 and Postinfection Immunity: Limited Evidence, Many Remaining Questions.|pdf=|usr=007}}
| + | *'''[[Immunopathology ]]''' |
− | {{tp|p=32510562|t=2020. Long-term and herd immunity against SARS-CoV-2: implications from current and past knowledge.|pdf=|usr=007}}
| + | *'''[[Secondary autoimmunity ]]''' |
− | {{tp|p=32418947|t=2020. Does immune privilege result in recovered patients testing positive for COVID-19 again?|pdf=|usr=007}}
| + | *'''[[Thymus, Immunosenescence ]]''' |
− | {{tp|p=32372779|t=2020. Do you become immune once you have been infected?|pdf=|usr=}}
| + | *'''[[Eosinophils ]]''' |
− | | + | *'''[[Microbiome ]]''' |
− | '''Neutralizing antibodies''' | + | *'''[[Pneumococcal synergism]]''' -new- |
− | {{tp|p=32454513|t=2020. Human neutralizing antibodies elicited by SARS-CoV-2 infection.|pdf=|usr=007}}
| + | *'''[[Bio-misc ]]''' ''on topic biology papers which cannot be indexed by title'' |
− | {{tp|p=32454512|t=2020. A human neutralizing antibody targets the receptor binding site of SARS-CoV-2.|pdf=|usr=007}}
| + | *'''[[Hematology ]]''' |
− | {{tp|p=32497196|t=2020. Neutralizing Antibodies Responses to SARS-CoV-2 in COVID-19 Inpatients and Convalescent Patients.|pdf=|usr=007}}
| + | *'''[[Cytokine_storm,_hemophagocytic_lymphohistiocytosis,_macrophage_activation_syndrome|Cytokine storm ]]''' |
− | {{ttp|p=32073157|t=2020. Antibodies to coronaviruses are higher in older compared with younger adults and binding antibodies are more sensitive than neutralizing antibodies in identifying coronavirus?associated illnesses |pdf=|usr=}}
| + | *'''[[Candidate_Compounds_Covid19 |Immunopharmacology ]]''' |
− | | + | *'''[[Diagnosis_(Laboratory) |Clinical Laboratory Dx]]''' |
− | '''Innate sensing of infection''' | + | |
− | {{ttp|p=32291557|t=ä. SARS-CoV-2-encoded nucleocapsid protein acts as a viral suppressor of RNA interference in cells |pdf=|usr=}}
| + | |
− | {{tp|p=32198201|t=2020. Coronavirus endoribonuclease targets viral polyuridine sequences to evade activating host sensors |pdf=|usr=}}
| + | |
− | {{tp|p=32374430|t=2020. DC/L-SIGNs of Hope in the COVID-19 Pandemic |pdf=|usr=}}
| + | |
− | {{tp|p=32361001|t=ä. Bioinformatic analysis and identification of single-stranded RNA sequences recognized by TLR7/8 in the SARS-CoV-2, SARS-CoV, and MERS-CoV genomes |pdf=|usr=}}
| + | |
− | {{tp|p=32248387|t=ä. Use of DAMPs and SAMPs as Therapeutic Targets or Therapeutics: A Note of Caution |pdf=|usr=}}
| + | |
− | {{ttp|p=32407669|t=ä. Heightened Innate Immune Responses in the Respiratory Tract of COVID-19 Patients |pdf=|usr=}}
| + | |
− | {{tp|p=32456409|t=2020. A theory on SARS-COV-2 susceptibility: reduced TLR7-activity as a mechanistic link between men, obese and elderly.|pdf=|usr=007}}
| + | |
− | {{ttp|p=32156572|t=2020. Viroporins and inflammasomes: A key to understand virus-induced inflammation |pdf=|usr=}}
| + | |
− | | + | |
− | '''nk cells''' | + | |
− | {{tp|p=32382127|t=ä. NKG2A and COVID-19: another brick in the wall |pdf=|usr=}}
| + | |
− | {{tp|p=32344314|t=2020. Innate immunity in COVID-19 patients mediated by NKG2A receptors, and potential treatment using Monalizumab, Cholroquine, and antiviral agents |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | '''integrative work''' | + | |
− | *[https://www.cell.com/action/showPdf?pii=S1074-7613%2820%2930183-7 rev. on covid immunology]
| + | |
− | {{tp|p=32205856|t=2020. COVID-19 infection: the perspectives on immune responses |pdf=|usr=}}
| + | |
− | {{tp|p=32359396|t=ä. A Dynamic Immune Response Shapes COVID-19 Progression |pdf=|usr=}}
| + | |
− | {{tp|p=C7064018|t=ä. Coronavirus infections: Epidemiological, clinical and immunological features and hypotheses |pdf=|usr=}}
| + | |
− | {{ttp|p=C7200337|t=ä. Immunology of COVID-19: current state of the science |pdf=|usr=}}
| + | |
− | {{tp|p=32505227|t=2020. Immunology of COVID-19: Current State of the Science.|pdf=|usr=007}}
| + | |
− | {{tp|p=32469225|t=2020. COVID-19 and the immune system.|pdf=|usr=007}}
| + | |
− | {{ttp|p=32436629|t=2020. High COVID-19 virus replication rates, the creation of antigen-antibody immune complexes and indirect haemagglutination resulting in thrombosis.|pdf=|usr=007}}
| + | |
− | {{tp|p=32507543|t=2020. Spiking Pandemic Potential: Structural and Immunological Aspects of SARS-CoV-2.|pdf=|usr=007}}
| + | |
− | {{ttp|p=32504757|t=2020. Protective role of ACE2 and its downregulation in SARS-CoV-2 infection leading to Macrophage Activation Syndrome: Therapeutic implications.|pdf=|usr=007}}
| + | |
− | {{tp|p=32493812|t=2020. Role of Aging and the Immune Response to Respiratory Viral Infections: Potential Implications for COVID-19.|pdf=|usr=007}}
| + | |
− | {{tp|p=32470151|t=2020. The perplexing question of trained immunity versus adaptive memory in COVID-19.|pdf=|usr=007}}
| + | |
− | {{tp|p=32472706|t=2020. The Long-Standing History of Corynebacterium Parvum, Immunity and Viruses.|pdf=|usr=007}}
| + | |
− | {{tp|p=32213336|t=ä. SARS-CoV-2: virus dynamics and host response |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | '''covid modulates the immune system'''
| + | |
− | {{tp|p=32364527|t=2020. Immune environment modulation in pneumonia patients caused by coronavirus: SARS-CoV, MERS-CoV and SARS-CoV-2 |pdf=|usr=}}
| + | |
− | {{tp|p=32172672|t=2020. A tug-of-war between severe acute respiratory syndrome coronavirus 2 and host antiviral defence: lessons from other pathogenic viruses |pdf=|usr=}}
| + | |
− | {{tp|p=32315725|t=ä. Suppressed T cell-mediated immunity in patients with COVID-19: a clinical retrospective study in Wuhan, China |pdf=|usr=}}
| + | |
− | {{ttp|p=32355328|t=ä. Impaired interferon signature in severe COVID-19 |pdf=|usr=}}
| + | |
− | {{tp|p=32375560|t=2020. SARS-CoV-2-Induced Immune Dysregulation and Myocardial Injury Risk in China: Insights from the ERS-COVID-19 Study |pdf=|usr=}}
| + | |
− | {{tp|p=32376308|t=ä. Lymphopenia is associated with severe coronavirus disease 2019 (COVID-19) infections: A systemic review and meta-analysis |pdf=|usr=}}
| + | |
− | {{ttp|p=32236983|t=2020. Why the immune system fails to mount an adaptive immune response to a COVID-19 infection |pdf=|usr=}}
| + | |
− | {{ttp|p=32286536|t=ä. Coronaviruses hijack the complement system |pdf=|usr=}}''host complement activator MASP2 as a target of the N protein of all three viruses''
| + | |
− | {{tp|p=32463803|t=2020. Impaired immune cell cytotoxicity in severe COVID-19 is IL-6 dependent.|pdf=|usr=007}}
| + | |
− | {{tp|p=32492165|t=2020. Clinical and Immune Features of Hospitalized Pediatric Patients With Coronavirus Disease 2019 (COVID-19) in Wuhan, China.|pdf=|usr=007}}
| + | |
− | | + | |
− | | + | |
− | '''mediators'''
| + | |
− | {{tp|p=32360285|t=ä. Type I IFN immunoprofiling in COVID-19 patients |pdf=|usr=}}
| + | |
− | {{ttp|p=32376393|t=ä. Interleukin-17A (IL-17A), a key molecule of innate and adaptive immunity, and its potential involvement in COVID-19-related thrombotic and vascular mechanisms |pdf=|usr=}}
| + | |
− | {{ttp|p=32305501|t=ä. The Potential Role of Th17 Immune Responses in Coronavirus Immunopathology and Vaccine-induced Immune Enhancement |pdf=|usr=}}
| + | |
− | {{tp|p=30715745|t=2019. (+)Th17 serum cytokines in relation to laboratory?confirmed respiratory viral infection: A pilot study |pdf=|usr=}}
| + | |
− | {{tp|p=32414693|t=2020. Interleukin-6 levels in children developing SARS-CoV-2 infection |pdf=|usr=}}
| + | |
− | {{ttp|p=32421281|t=2020. Is there relationship between SARS-CoV 2 and the complement C3 and C4?|pdf=|usr=007}}
| + | |
− | {{tp|p=32437622|t=2020. Complement Activation During Critical Illness: Current Findings and an Outlook in the Era of COVID-19.|pdf=|usr=007}}
| + | |
− | | + | |
− | '''plasmacytoid dendritic cells''' | + | |
− | {{tp|p=32298486|t=2020. Plasmacytoid lymphocytes in SARS-CoV-2 infection (Covid-19) |pdf=|usr=}}
| + | |
− | | + | |
− | '''immune cell subpopulations''' | + | |
− | {{tp|p=32282871|t=ä. Inflammatory Response Cells During Acute Respiratory Distress Syndrome in Patients With Coronavirus Disease 2019 (COVID-19) |pdf=|usr=}}
| + | |
− | {{tp|p=32325421|t=2020. Increased expression of CD8 marker on T-cells in COVID-19 patients |pdf=|usr=}}
| + | |
− | {{tp|p=32377375|t=2020. Immune cell profiling of COVID-19 patients in the recovery stage by single-cell sequencing |pdf=|usr=}}
| + | |
− | {{tp|p=32346099|t=ä. High-dimensional immune profiling by mass cytometry revealed immunosuppression and dysfunction of immunity in COVID-19 patients |pdf=|usr=}}
| + | |
− | {{tp|p=32339487|t=2020. Abnormalities of peripheral blood system in patients with COVID-19 in Wenzhou, China |pdf=|usr=}}
| + | |
− | {{tp|p=32361250|t=2020. Longitudinal characteristics of lymphocyte responses and cytokine profiles in the peripheral blood of SARS-CoV-2 infected patients |pdf=|usr=}}
| + | |
− | {{tp|p=32228226|t=2020. Transcriptomic characteristics of bronchoalveolar lavage fluid and peripheral blood mononuclear cells in COVID-19 patients |pdf=|usr=}}
| + | |
− | {{tp|p=32196410|t=2020. Hypothesis for potential pathogenesis of SARS-CoV-2 infection?a review of immune changes in patients with viral pneumonia |pdf=|usr=}}
| + | |
− | {{tp|p=32333914|t=ä. A possible role for B cells in COVID-19?: Lesson from patients with Agammaglobulinemia |pdf=|usr=}}
| + | |
− | {{tp|p=32344320|t=ä. The clinical course and its correlated immune status in COVID-19 pneumonia |pdf=|usr=}}
| + | |
− | {{tp|p=32325129|t=ä. The profile of peripheral blood lymphocyte subsets and serum cytokines in children with 2019 novel coronavirus pneumonia |pdf=|usr=}}
| + | |
− | {{tp|p=32283159|t=ä. Lymphocyte subset (CD4+, CD8+) counts reflect the severity of infection and predict the clinical outcomes in patients with COVID-19 |pdf=|usr=}}
| + | |
− | {{tp|p=32227123|t=ä. Characteristics of Peripheral Lymphocyte Subset Alteration in COVID-19 Pneumonia |pdf=|usr=}}
| + | |
− | {{tp|p=32343510|t=2020. COVID-19: are T lymphocytes simply watching?|pdf=|usr=}}
| + | |
− | {{tp|p=32379887|t=ä. T cell subset counts in peripheral blood can be used as discriminatory biomarkers for diagnosis and severity prediction of COVID-19 |pdf=|usr=}}
| + | |
− | {{tp|p=32297671|t=2020. Relationships among lymphocyte subsets, cytokines, and the pulmonary inflammation index in coronavirus (COVID-19) infected patients |pdf=|usr=}}
| + | |
− | {{tp|p=32352397|t=2020. The hemocyte counts as a potential biomarker for predicting disease progression in COVID-19: a retrospective study |pdf=|usr=}}
| + | |
− | {{tp|p=32379199|t=2020. A Typical Case of Critically Ill Infant of Coronavirus Disease 2019 With Persistent Reduction of T Lymphocytes |pdf=|usr=}}
| + | |
− | {{tp|p=32296069|t=2020. Lymphopenia predicts disease severity of COVID-19: a descriptive and predictive study |pdf=|usr=}}
| + | |
− | {{tp|p=32407057|t=2020. Peripheral lymphocyte subset monitoring in COVID19 patients: a prospective Italian real-life case series.|pdf=|usr=007}}
| + | |
− | {{tp|p=32297828|t=2020. Correlation Between Relative Nasopharyngeal Virus RNA Load and Lymphocyte Count Disease Severity in Patients with COVID-19 |pdf=|usr=}}
| + | |
− | {{tp|p=32370466|t=2020. Characteristics of peripheral blood leukocyte differential counts in patients with COVID-19 |pdf=|usr=}}
| + | |
− | {{tp|p=32114745|t=2020. Characteristics of peripheral blood leukocyte differential counts in patients with COVID-19 |pdf=|usr=}}
| + | |
− | {{tp|p=32377375|t=2020. Immune cell profiling of COVID-19 patients in the recovery stage by single-cell sequencing |pdf=|usr=}}
| + | |
− | {{tp|p=32361250|t=2020. Longitudinal characteristics of lymphocyte responses and cytokine profiles in the peripheral blood of SARS-CoV-2 infected patients |pdf=|usr=}}
| + | |
− | {{ttp|p=32376308|t=2020. Lymphopenia is associated with severe coronavirus disease 2019 (COVID-19) infections: A systemic review and meta-analysis |pdf=|usr=}}
| + | |
− | {{tp|p=32458561|t=2020. Lymphopenia in COVID-19: Therapeutic opportunities.|pdf=|usr=007}}
| + | |
− | {{tp|p=32420610|t=2020. Temporal changes in immune blood cell parameters in COVID-19 infection and recovery from severe infection.|pdf=|usr=007}}
| + | |
− | {{tp|p=32470153|t=2020. Characteristics of inflammatory factors and lymphocyte subsets in patients with severe COVID-19.|pdf=|usr=007}}
| + | |
− | {{tp|p=32474608|t=2020. Decreased B cells on admission was associated with prolonged viral RNA shedding from respiratory tract in Coronavirus Disease 2019: a case control study.|pdf=|usr=007}}
| + | |
− | | + | |
− | | + | |
− | | + | |
− | '''t cell exhaustion''' | + | |
− | {{tp|p=32249845|t=ä. Fighting COVID-19 exhausts T cells |pdf=|usr=}}
| + | |
− | | + | |
− | {{ttp|p=32203188|t=ä. Functional exhaustion of antiviral lymphocytes in COVID-19 patients |pdf=|usr=}}
| + | |
− | {{ttp|p=32203186|t=ä. Elevated exhaustion levels and reduced functional diversity of T cells in peripheral blood may predict severe progression in COVID-19 patients |pdf=|usr=}}
| + | |
− | {{ttp|p=32203188|t=2020. Functional exhaustion of antiviral lymphocytes in COVID-19 patients |pdf=|usr=}}
| + | |
− | {{ttp|p=32203186|t=2020. Elevated exhaustion levels and reduced functional diversity of T cells in peripheral blood may predict severe progression in COVID-19 patients |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | | + | |
− | '''immunopathology''' | + | |
− | {{tp|p=32371101|t=ä. The correlation between SARS-CoV-2 infection and rheumatic disease |pdf=|usr=}}
| + | |
− | {{tp|p=32205186|t=2020. COVID-19 infection and rheumatoid arthritis: Faraway, so close!|pdf=|usr=}}
| + | |
− | {{tp|p=32308263|t=2020. CoViD-19 Immunopathology and Immunotherapy |pdf=|usr=}}
| + | |
− | {{tp|p=32320677|t=ä. Complex Immune Dysregulation in COVID-19 Patients with Severe Respiratory Failure |pdf=|usr=}}
| + | |
− | {{tp|p=32161940|t=ä. Dysregulation of immune response in patients with COVID-19 in Wuhan, China |pdf=|usr=}}
| + | |
− | {{tp|p=32282863|t=ä. Molecular immune pathogenesis and diagnosis of COVID-19 |pdf=|usr=}}
| + | |
− | {{tp|p=32321823|t=2020. COVID-19: an Immunopathological View |pdf=|usr=}}
| + | |
− | {{tp|p=32273594|t=ä. COVID-19: immunopathology and its implications for therapy |pdf=|usr=}}
| + | |
− | {{tp|p=32303696|t=ä. Macrophages: a Trojan horse in COVID-19?|pdf=|usr=}}
| + | |
− | {{ttp|p=32376901|t=ä. Pathological inflammation in patients with COVID-19: a key role for monocytes and macrophages |pdf=|usr=}}
| + | |
− | {{tp|p=32423059|t=2020. Recent Insight into SARS-CoV2 Immunopathology and Rationale for Potential Treatment and Preventive Strategies in COVID-19.|pdf=|usr=007}}
| + | |
− | {{tp|p=32485101|t=2020. Vascular Endothelial Growth Factor (VEGF) as a Vital Target for Brain Inflammation during the COVID-19 Outbreak.|pdf=|usr=007}}
| + | |
− | {{tp|p=32423917|t=2020. COVID-19 as an Acute Inflammatory Disease.|pdf=|usr=007}}
| + | |
− | {{ttp|p=32512289|t=2020. Neutralizing antibodies mediate virus-immune pathology of COVID-19.|pdf=|usr=007}}
| + | |
− | {{tp|p=32398875|t=2020. Single-cell landscape of bronchoalveolar immune cells in patients with COVID-19.|pdf=|usr=007}}
| + | |
− | {{tp|p=32391668|t=2020. [Dynamic inflammatory response in a critically ill COVID-19 patient treated with corticosteroids].|pdf=|usr=007}}
| + | |
− | {{ttp|p=32498376|t=2020. Neutrophils and Neutrophil Extracellular Traps Drive Necroinflammation in COVID-19.|pdf=|usr=007}}
| + | |
− | {{tp|p=32460357|t=2020. Immunopathological characteristics of coronavirus disease 2019 cases in Guangzhou, China.|pdf=|usr=007}}
| + | |
− | | + | |
− | | + | |
− | '''antiviral immune response''' | + | |
− | {{tp|p=32280952|t=ä. Good IgA bad IgG in SARS-CoV-2 infection?|pdf=|usr=}}
| + | |
− | {{tp|p=32353870|t=2020. The many faces of the anti-COVID immune response |pdf=|usr=}}
| + | |
− | {{tp|p=32358956|t=ä. Longitudinal Change of SARS-Cov2 Antibodies in Patients with COVID-19 |pdf=|usr=}}
| + | |
− | {{tp|p=31981224|t=2020. Coronavirus infections and immune responses |pdf=|usr=}}
| + | |
− | {{tp|p=32198005|t=2020. A case of COVID-19 and pneumonia returning from Macau in Taiwan: Clinical course and anti-SARS-CoV-2 IgG dynamic |pdf=|usr=}}
| + | |
− | {{tp|p=32284614|t=ä. Breadth of concomitant immune responses prior to patient recovery: a case report of non-severe COVID-19 |pdf=|usr=}}
| + | |
− | {{tp|p=32355329|t=ä. SARS-CoV-2-reactive T cells in patients and healthy donors |pdf=|usr=}}
| + | |
− | {{tp|p=32346091|t=ä. Neutralizing antibody response in mild COVID-19 |pdf=|usr=}}
| + | |
− | {{tp|p=32356908|t=2020. Mathematical modeling of interaction between innate and adaptive immune responses in COVID-19 and implications for viral pathogenesis |pdf=|usr=}}
| + | |
− | {{ttp|p=32343415|t=2020. Long-term coexistence of SARS-CoV-2 with antibody response in COVID-19 patients |pdf=|usr=}}
| + | |
− | {{tp|p=32330332|t=2020. SARS-CoV-2 infection in children - Understanding the immune responses and controlling the pandemic |pdf=|usr=}}
| + | |
− | {{tp|p=32267987|t=2020. Immune responses and pathogenesis of SARS?CoV?2 during an outbreak in Iran: Comparison with SARS and MERS |pdf=|usr=}}
| + | |
− | {{tp|p=32348715|t=2020. B Cells, Viruses, and the SARS-CoV-2/COVID-19 Pandemic of 2020 |pdf=|usr=}}
| + | |
− | {{tp|p=32382126|t=ä. Protective humoral immunity in SARS-CoV-2 infected pediatric patients |pdf=|usr=}}
| + | |
− | {{tp|p=32200654|t=2020. Time Kinetics of Viral Clearance and Resolution of Symptoms in Novel Coronavirus Infection |pdf=|usr=}}
| + | |
− | {{tp|p=32476607|t=2020. Delayed specific IgM antibody responses observed among COVID-19 patients with severe progression.|pdf=|usr=007}}
| + | |
− | {{tp|p=32449333|t=2020. (+)Ability of the immune system to fight viruses highlighted by cytometry and TCR clonotype assessments: lessons taken prior to COVID-19 virus pandemic outbreak.|pdf=|usr=007}}
| + | |
− | {{tp|p=32430094|t=2020. The dynamics of humoral immune responses following SARS-CoV-2 infection and the potential for reinfection.|pdf=|usr=007}}
| + | |
− | {{tp|p=32467617|t=2020. Serum IgA, IgM, and IgG responses in COVID-19.|pdf=|usr=007}}
| + | |
− | {{ttp|p=32467616|t=2020. More bricks in the wall against SARS-CoV-2 infection: involvement of gamma9delta2 T cells.|pdf=|usr=007}}
| + | |
− | {{ttp|p=32463434|t=2020. Metatranscriptomic Characterization of COVID-19 Identified A Host Transcriptional Classifier Associated With Immune Signaling.|pdf=|usr=007}}
| + | |
− | | + | |
− | '''secondary autoimmunity'''
| + | |
− | {{tp|p=32292901|t=2020. Pathogenic priming likely contributes to serious and critical illness and mortality in COVID-19 via autoimmunity |pdf=|usr=}}
| + | |
− | {{tp|p=32220633|t=2020. Could Sars-coronavirus-2 trigger autoimmune and/or autoinflammatory mechanisms in genetically predisposed subjects?|pdf=|usr=}}
| + | |
− | {{tp|p=32315487|t=2020. Clinical and Autoimmune Characteristics of Severe and Critical Cases of COVID-19 |pdf=|usr=}}
| + | |
− | {{ttp|p=32314313|t=2020. Is COVID-19 a proteiform disease inducing also molecular mimicry phenomena?|pdf=|usr=}}
| + | |
− | {{tp|p=32389543|t=ä. COVID-19 and molecular mimicry: The Columbus? egg?|pdf=|usr=}}
| + | |
− | {{tp|p=32444414|t=2020. Antibodies against immunogenic epitopes with high sequence identity to SARS-CoV-2 in patients with autoimmune dermatomyositis.|pdf=|usr=007}}
| + | |
− | | + | |
− | | + | |
− | '''Thymus''' | + | |
− | {{tp|p=32340873|t=ä. Reply: Thymopoiesis, inflamm-aging, and COVID-19 phenotype |pdf=|usr=}}
| + | |
− | {{tp|p=32317217|t=ä. Role of thymopoiesis and inflamm-aging in COVID-19 phenotype |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | '''Eosinopenia, Eosinophilia''' | + | |
− | {{tp|p=32368728|t=ä. Eosinopenia and elevated C-reactive protein facilitate triage of COVID-19 patients in fever clinic: a retrospective case-control study |pdf=|usr=}}
| + | |
− | {{tp|p=32344056|t=ä. Eosinophil Responses During COVID-19 Infections and Coronavirus Vaccination |pdf=|usr=}}
| + | |
− | {{tp|p=32369190|t=2020. COVID-19, chronic inflammatory respiratory diseases and eosinophils - Observationsfrom reported clinical case series |pdf=|usr=}}
| + | |
− | {{ttp|p=32315429|t=ä. Eosinophil count in severe coronavirus disease 2019 (COVID-19) |pdf=|usr=}}
| + | |
− | {{tp|p=32315421|t=ä. Response letter to Eosinophil count in severe coronavirus disease 2019 (COVID-19) |pdf=|usr=}}
| + | |
− | {{tp|p=32390402|t=2020. SARS-CoV-2 and Eosinophilia.|pdf=|usr=007}}
| + | |
− | | + | |
− | | + | |
− | '''microbiome''' | + | |
− | {{tp|p=32497191|t=2020. Alterations of the Gut Microbiota in Patients with COVID-19 or H1N1 Influenza.|pdf=|usr=007}}
| + | |
− | {{ttp|p=32426999|t=2020. Gnotobiotic Rats Reveal That Gut Microbiota Regulates Colonic mRNA of Ace2, the Receptor for SARS-CoV-2 Infectivity.|pdf=|usr=007}}
| + | |
− | | + | |
− | | + | |
− | ===007===
| + | |
− | '''some other papers''' | + | |
− | {{tp|p=32496715|t=2020. [Etiology of epidemic outbreaks COVID-19 on Wuhan, Hubei province, Chinese People Republic associated with 2019-nCoV (Nidovirales, Coronaviridae, Coronavirinae, Betacoronavirus, Subgenus Sarbecovirus): lessons of SARS-CoV outbreak.]|pdf=|usr=007}}
| + | |
− | {{tp|p=32455617|t=2020. Novel Dynamic Structures of 2019-nCoV with Nonlocal Operator via Powerful Computational Technique.|pdf=|usr=007}}
| + | |
− | {{tp|p=32512133|t=2020. Poor-sleep is associated with slow recovery from lymphopenia and an increased need for ICU care in hospitalized patients with COVID-19: A retrospective cohort study.|pdf=|usr=007}}
| + | |
− | {{tp|p=32512089|t=2020. Corona virus versus existence of human on the earth: A computational and biophysical approach.|pdf=|usr=007}}
| + | |
− | {{tp|p=32470223|t=2020. COVID-19: Structural Predictions of Viral Success.|pdf=|usr=007}}
| + | |
− | {{tp|p=32423901|t=2020. How covid-19 is accelerating the threat of antimicrobial resistance.|pdf=|usr=007}}
| + | |
− | {{tp|p=32413176|t=2020. The emergence of methemoglobinemia amidst the COVID-19 pandemic.|pdf=|usr=007}}
| + | |
− | {{tp|p=32504123|t=2020. COVID-19 research: toxicological input urgently needed!|pdf=|usr=007}}
| + | |
− | {{tp|p=32412787|t=2020. Bronchoscopy in COVID-19 Patients with Invasive Mechanical Ventilation: A Center Experience.|pdf=|usr=007}}
| + | |
− | {{tp|p=32213337|t=ä. Temporal profiles of viral load in posterior oropharyngeal saliva samples and serum antibody responses during infection by SARS-CoV-2: an observational cohort study |pdf=|usr=}}
| + | |
− | {{tp|p=32215589|t=2020. Antibodies in Infants Born to Mothers With COVID-19 Pneumonia |pdf=|usr=}}
| + | |
− | {{tp|p=32360743|t=ä. Lower detection rates of SARS-COV2 antibodies in cancer patients vs healthcare workers after symptomatic COVID-19 |pdf=|usr=}}
| + | |
− | {{tp|p=32292530|t=2020. Respiratory diseases, allergy and COVID-19 infection. First news from Wuhan|pdf=|usr=}}
| + | |
− | {{tp|p=32346093|t=ä. The trinity of COVID-19: immunity, inflammation and intervention |pdf=|usr=}}
| + | |
− | {{tp|p=32348636|t=2020. Hyposalivation as a potential risk for SARS-CoV-2 infection: Inhibitory role of saliva |pdf=|usr=}}
| + | |
− | {{tp|p=32235915|t=ä. COVID-19: a new challenge for human beings |pdf=|usr=}}
| + | |
− | {{ttp|p=32359201|t=2020. The first, holistic immunological model of COVID-19: implications for prevention, diagnosis, and public health measures |pdf=|usr=}}
| + | |
− | {{tp|p=32376309|t=2020. Viral kinetics of SARS-CoV-2 in asymptomatic carriers and presymptomatic patients |pdf=|usr=}}
| + | |
− | {{tp|p=32132669|t=ä. Novel antibody epitopes dominate the antigenicity of spike glycoprotein in SARS-CoV-2 compared to SARS-CoV |pdf=|usr=}}
| + | |
− | {{tp|p=32388390|t=2020. The powerful immune system against powerful COVID-19: A hypothesis |pdf=|usr=}}
| + | |
− | {{tp|p=32372807|t=2020. The fever paradox |pdf=|usr=}}
| + | |