|
|
(41 dazwischenliegende Versionen von einem Benutzer werden nicht angezeigt) |
Zeile 1: |
Zeile 1: |
− | {{pnc}} | + | {{pnc}}__NOTOC__ |
− | *[https://www.cell.com/action/showPdf?pii=S1074-7613%2820%2930183-7 rev. on covid immunology]
| + | |
− | {{tp|p=32364527|t=2020. Immune environment modulation in pneumonia patients caused by coronavirus: SARS-CoV, MERS-CoV and SARS-CoV-2 |pdf=|usr=}}
| + | |
− | {{tp|p=32282871|t=ä. Inflammatory Response Cells During Acute Respiratory Distress Syndrome in Patients With Coronavirus Disease 2019 (COVID-19) |pdf=|usr=}}
| + | |
− | {{tp|p=32371101|t=ä. The correlation between SARS-CoV-2 infection and rheumatic disease |pdf=|usr=}}
| + | |
− | {{tp|p=32205186|t=2020. COVID-19 infection and rheumatoid arthritis: Faraway, so close!|pdf=|usr=}}
| + | |
− | {{tp|p=32308263|t=2020. CoViD-19 Immunopathology and Immunotherapy |pdf=|usr=}}
| + | |
− | {{tp|p=32325421|t=2020. Increased expression of CD8 marker on T-cells in COVID-19 patients |pdf=|usr=}}
| + | |
− | {{tp|p=32205856|t=2020. COVID-19 infection: the perspectives on immune responses |pdf=|usr=}}
| + | |
− | {{tp|p=32359396|t=ä. A Dynamic Immune Response Shapes COVID-19 Progression |pdf=|usr=}}
| + | |
− | {{tp|p=32377375|t=2020. Immune cell profiling of COVID-19 patients in the recovery stage by single-cell sequencing |pdf=|usr=}}
| + | |
− | {{tp|p=32320677|t=ä. Complex Immune Dysregulation in COVID-19 Patients with Severe Respiratory Failure |pdf=|usr=}}
| + | |
− | {{tp|p=32346099|t=ä. High-dimensional immune profiling by mass cytometry revealed immunosuppression and dysfunction of immunity in COVID-19 patients |pdf=|usr=}}
| + | |
| | | |
− | {{tp|p=32339487|t=2020. Abnormalities of peripheral blood system in patients with COVID-19 in Wenzhou, China |pdf=|usr=}} | + | {{ft|I}} |
− | {{tp|p=32333860|t=2020. Presepsin in risk stratification of SARS-CoV-2 patients |pdf=|usr=}}
| + | *'''[[Antibody-dependent enhancement ]]''' |
− | {{tp|p=32161940|t=ä. Dysregulation of immune response in patients with COVID-19 in Wuhan, China |pdf=|usr=}}
| + | *'''[[Herd immunity ]]''' |
− | {{tp|p=32280952|t=ä. Good IgA bad IgG in SARS-CoV-2 infection?|pdf=|usr=}}
| + | *'''[[Neutralizing antibodies ]]''' |
− | {{tp|p=32354367|t=2020. Soluble urokinase plasminogen activator receptor (suPAR) as an early predictor of severe respiratory failure in patients with COVID-19 pneumonia |pdf=|usr=}}
| + | *'''[[Innate immunology ]]''' |
| + | *'''[[Integrative work ]]''' ''reviews, intertopic'' |
| + | *'''[[Cov2 modulates the immune system ]]''' |
| + | *'''[[Immune cell subpopulations ]]''' |
| + | *'''[[T cell exhaustion ]]''' |
| + | *'''[[NK cells ]]''' |
| | | |
− | {{tp|p=32361250|t=2020. Longitudinal characteristics of lymphocyte responses and cytokine profiles in the peripheral blood of SARS-CoV-2 infected patients |pdf=|usr=}}
| + | *'''[[MDSC myeloid-derived suppressor cells]] |
− | {{tp|p=32368728|t=ä. Eosinopenia and elevated C-reactive protein facilitate triage of COVID-19 patients in fever clinic: a retrospective case-control study |pdf=|usr=}}
| + | *'''[[Antiviral immune response ]]''' |
− | {{tp|p=32228226|t=2020. Transcriptomic characteristics of bronchoalveolar lavage fluid and peripheral blood mononuclear cells in COVID-19 patients |pdf=|usr=}}
| + | *'''[[Antiviral mediators ]]''' |
− | {{tp|p=32196410|t=2020. Hypothesis for potential pathogenesis of SARS-CoV-2 infection?a review of immune changes in patients with viral pneumonia |pdf=|usr=}}
| + | *'''[[Immunopathology ]]''' |
− | {{tp|p=32172672|t=2020. A tug-of-war between severe acute respiratory syndrome coronavirus 2 and host antiviral defence: lessons from other pathogenic viruses |pdf=|usr=}}
| + | *'''[[Secondary autoimmunity ]]''' |
− | | + | *'''[[Thymus, Immunosenescence ]]''' |
− | {{tp|p=32348472|t=ä. A Marker of Systemic Inflammation or Direct Cardiac Injury: Should Cardiac Troponin Levels be Monitored in COVID-19 Patients?|pdf=|usr=}}
| + | *'''[[Eosinophils ]]''' |
− | | + | *'''[[Microbiome ]]''' |
− | {{tp|p=32360285|t=ä. Type I IFN immunoprofiling in COVID-19 patients |pdf=|usr=}}
| + | *'''[[Pneumococcal synergism]]''' -new- |
− | {{tp|p=32344056|t=ä. Eosinophil Responses During COVID-19 Infections and Coronavirus Vaccination |pdf=|usr=}}
| + | *'''[[Bio-misc ]]''' ''on topic biology papers which cannot be indexed by title'' |
− | {{tp|p=32333914|t=ä. A possible role for B cells in COVID-19?: Lesson from patients with Agammaglobulinemia |pdf=|usr=}}
| + | *'''[[Hematology ]]''' |
− | {{tp|p=32344321|t=2020. Prognostic value of interleukin-6, C-reactive protein, and procalcitonin in patients with COVID-19 |pdf=|usr=}}
| + | *'''[[Cytokine_storm,_hemophagocytic_lymphohistiocytosis,_macrophage_activation_syndrome|Cytokine storm ]]''' |
− | {{tp|p=32344320|t=ä. The clinical course and its correlated immune status in COVID-19 pneumonia |pdf=|usr=}}
| + | *'''[[Candidate_Compounds_Covid19 |Immunopharmacology ]]''' |
− | {{tp|p=32353870|t=2020. The many faces of the anti-COVID immune response |pdf=|usr=}}
| + | *'''[[Diagnosis_(Laboratory) |Clinical Laboratory Dx]]''' |
− | | + | |
− | {{tp|p=32277967|t=ä. SAA is a biomarker to distinguish the severity and prognosis of Coronavirus Disease 2019 (COVID-19) |pdf=|usr=}}
| + | |
− | {{tp|p=32325129|t=ä. The profile of peripheral blood lymphocyte subsets and serum cytokines in children with 2019 novel coronavirus pneumonia |pdf=|usr=}}
| + | |
− | {{tp|p=32315725|t=ä. Suppressed T cell-mediated immunity in patients with COVID-19: a clinical retrospective study in Wuhan, China |pdf=|usr=}}
| + | |
− | {{tp|p=32283159|t=ä. Lymphocyte subset (CD4+, CD8+) counts reflect the severity of infection and predict the clinical outcomes in patients with COVID-19 |pdf=|usr=}}
| + | |
− | {{tp|p=32283164|t=ä. Clinical and laboratory-derived parameters of 119 hospitalized patients with coronavirus disease 2019 in Xiangyang, Hubei Province, China |pdf=|usr=}}
| + | |
− | {{tp|p=32283162|t=ä. Neutrophil-to-lymphocyte ratio as an independent risk factor for mortality in hospitalized patients with COVID-19 |pdf=|usr=}}
| + | |
− | {{tp|p=32358956|t=ä. Longitudinal Change of SARS-Cov2 Antibodies in Patients with COVID-19 |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=32227123|t=ä. Characteristics of Peripheral Lymphocyte Subset Alteration in COVID-19 Pneumonia |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=31981224|t=2020. Coronavirus infections and immune responses |pdf=|usr=}}
| + | |
− | {{tp|p=32198005|t=2020. A case of COVID-19 and pneumonia returning from Macau in Taiwan: Clinical course and anti-SARS-CoV-2 IgG dynamic |pdf=|usr=}}
| + | |
− | {{tp|p=32282863|t=ä. Molecular immune pathogenesis and diagnosis of COVID-19 |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=32292901|t=2020. Pathogenic priming likely contributes to serious and critical illness and mortality in COVID-19 via autoimmunity |pdf=|usr=}}
| + | |
− | {{tp|p=32303592|t=2020. Human leukocyte antigen susceptibility map for SARS-CoV-2 |pdf=|usr=}}
| + | |
− | {{tp|p=32215589|t=2020. Antibodies in Infants Born to Mothers With COVID-19 Pneumonia |pdf=|usr=}}
| + | |
− | {{tp|p=32324595|t=2020. The laboratory tests and host immunity of COVID-19 patients with different severity of illness |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=32259560|t=ä. Interleukin-6 as a potential biomarker of COVID-19 progression |pdf=|usr=}}
| + | |
− | {{ttp|p=32092539|t=2020. Is COVID-19 receiving ADE from other coronaviruses?|pdf=|usr=}}
| + | |
− | {{tp|p=32268188|t=ä. It is too soon to attribute ADE to COVID-19 |pdf=|usr=}}
| + | |
− | {{tp|p=32361001|t=ä. Bioinformatic analysis and identification of single-stranded RNA sequences recognized by TLR7/8 in the SARS-CoV-2, SARS-CoV, and MERS-CoV genomes |pdf=|usr=}}
| + | |
− | {{ttp|p=32305501|t=ä. The Potential Role of Th17 Immune Responses in Coronavirus Immunopathology and Vaccine-induced Immune Enhancement |pdf=|usr=}}
| + | |
− | {{tp|p=32248387|t=ä. Use of DAMPs and SAMPs as Therapeutic Targets or Therapeutics: A Note of Caution |pdf=|usr=}}
| + | |
− | {{tp|p=32321823|t=2020. COVID-19: an Immunopathological View |pdf=|usr=}}
| + | |
− | {{tp|p=32284614|t=ä. Breadth of concomitant immune responses prior to patient recovery: a case report of non-severe COVID-19 |pdf=|usr=}}
| + | |
− | {{tp|p=32273594|t=ä. COVID-19: immunopathology and its implications for therapy |pdf=|usr=}}
| + | |
− | {{tp|p=32249845|t=ä. Fighting COVID-19 exhausts T cells |pdf=|usr=}}
| + | |
− | {{tp|p=32355329|t=ä. SARS-CoV-2-reactive T cells in patients and healthy donors |pdf=|usr=}}
| + | |
− | {{ttp|p=32355328|t=ä. Impaired interferon signature in severe COVID-19 |pdf=|usr=}}
| + | |
− | {{tp|p=32346093|t=ä. The trinity of COVID-19: immunity, inflammation and intervention |pdf=|usr=}}
| + | |
− | {{tp|p=32346091|t=ä. Neutralizing antibody response in mild COVID-19 |pdf=|usr=}}
| + | |
− | {{tp|p=32303697|t=ä. Will we see protection or reinfection in COVID-19?|pdf=|usr=}}
| + | |
− | {{tp|p=32303696|t=ä. Macrophages: a Trojan horse in COVID-19?|pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=32343510|t=2020. COVID-19: are T lymphocytes simply watching?|pdf=|usr=}}
| + | |
− | {{tp|p=32340873|t=ä. Reply: Thymopoiesis, inflamm-aging, and COVID-19 phenotype |pdf=|usr=}}
| + | |
− | {{tp|p=32317217|t=ä. Role of thymopoiesis and inflamm-aging in COVID-19 phenotype |pdf=|usr=}}
| + | |
− | | + | |
− | {{ttp|p=32315429|t=ä. Eosinophil count in severe coronavirus disease 2019 (COVID-19) |pdf=|usr=}}
| + | |
− | {{tp|p=32315421|t=ä. Response letter to Eosinophil count in severe coronavirus disease 2019 (COVID-19) |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=32292530|t=2020. Respiratory diseases, allergy and COVID-19 infection. First news from Wuhan|pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=32369190|t=2020. COVID-19, chronic inflammatory respiratory diseases and eosinophils - Observationsfrom reported clinical case series |pdf=|usr=}}
| + | |
− | {{tp|p=32298486|t=2020. Plasmacytoid lymphocytes in SARS-CoV-2 infection (Covid-19) |pdf=|usr=}}
| + | |
− | {{tp|p=32360743|t=ä. Lower detection rates of SARS-COV2 antibodies in cancer patients vs healthcare workers after symptomatic COVID-19 |pdf=|usr=}}
| + | |
− | | + | |
− | {{ttp|p=32376393|t=ä. Interleukin-17A (IL-17A), a key molecule of innate and adaptive immunity, and its potential involvement in COVID-19-related thrombotic and vascular mechanisms |pdf=|usr=}}
| + | |
− | {{tp|p=32220633|t=2020. Could Sars-coronavirus-2 trigger autoimmune and/or autoinflammatory mechanisms in genetically predisposed subjects?|pdf=|usr=}}
| + | |
− | {{tp|p=32297671|t=2020. Relationships among lymphocyte subsets, cytokines, and the pulmonary inflammation index in coronavirus (COVID-19) infected patients |pdf=|usr=}}
| + | |
− | {{tp|p=32311762|t=2020. SARS-CoV-2: a new aetiology for atypical lymphocytes |pdf=|usr=}}
| + | |
− | {{tp|p=32297330|t=2020. Reactive lymphocytes in patients with Covid-19 |pdf=|usr=}}
| + | |
− | {{ttp|p=32203188|t=2020. Functional exhaustion of antiviral lymphocytes in COVID-19 patients |pdf=|usr=}}
| + | |
− | {{ttp|p=32203186|t=2020. Elevated exhaustion levels and reduced functional diversity of T cells in peripheral blood may predict severe progression in COVID-19 patients |pdf=|usr=}}
| + | |
− | {{ttp|p=32314313|t=2020. Is COVID-19 a proteiform disease inducing also molecular mimicry phenomena?|pdf=|usr=}}
| + | |
− | {{tp|p=32375560|t=2020. SARS-CoV-2-Induced Immune Dysregulation and Myocardial Injury Risk in China: Insights from the ERS-COVID-19 Study |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=32119647|t=2020. Laboratory abnormalities in patients with COVID-2019 infection |pdf=|usr=}}
| + | |
− | {{tp|p=32172227|t=2020. Laboratory abnormalities in children with novel coronavirus disease 2019 |pdf=|usr=}}
| + | |
− | {{tp|p=32352397|t=2020. The hemocyte counts as a potential biomarker for predicting disease progression in COVID-19: a retrospective study |pdf=|usr=}}
| + | |
− | {{tp|p=32242828|t=2020. Decreased "WBC*LYM" was observed in SARS-CoV-2-infected patients from a fever clinic in Wuhan |pdf=|usr=}}
| + | |
− | {{tp|p=32301746|t=2020. Routine blood tests as a potential diagnostic tool for COVID-19 |pdf=|usr=}}
| + | |
− | {{ttp|p=32286245|t=2020. Hematologic, biochemical and immune biomarker abnormalities associated with severe illness and mortality in coronavirus disease 2019 (COVID-19): a meta-analysis |pdf=|usr=}}
| + | |
− | {{tp|p=32365221|t=2020. Using IL-2R/lymphocytes for predicting the clinical progression of patients with COVID-19 |pdf=|usr=}}
| + | |
− | {{tp|p=32315487|t=2020. Clinical and Autoimmune Characteristics of Severe and Critical Cases of COVID-19 |pdf=|usr=}}
| + | |
− | {{tp|p=32343152|t=2020. ABO blood group predisposes to COVID-19 severity and cardiovascular diseases |pdf=|usr=}}
| + | |
− | {{tp|p=32376308|t=ä. Lymphopenia is associated with severe coronavirus disease 2019 (COVID-19) infections: A systemic review and meta-analysis |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=32379887|t=ä. T cell subset counts in peripheral blood can be used as discriminatory biomarkers for diagnosis and severity prediction of COVID-19 |pdf=|usr=}}
| + | |
− | {{tp|p=32181911|t=ä. Diagnostic utility of clinical laboratory data determinations for patients with the severe COVID?19 |pdf=|usr=}}
| + | |
− | {{tp|p=32356908|t=2020. Mathematical modeling of interaction between innate and adaptive immune responses in COVID-19 and implications for viral pathogenesis |pdf=|usr=}}
| + | |
− | {{tp|p=32347972|t=2020. Elevations of serum cancer biomarkers correlate with severity of COVID-19 |pdf=|usr=}}
| + | |
− | {{tp|p=32343415|t=2020. Long-term coexistence of SARS-CoV-2 with antibody response in COVID-19 patients |pdf=|usr=}}
| + | |
− | {{tp|p=32297995|t=2020. High IL-6/IFN-gamma ratio could be associated with severe disease in COVID-19 patients |pdf=|usr=}}
| + | |
− | {{tp|p=32281668|t=2020. C-reactive protein correlates with computed tomographic findings and predicts severe COVID-19 early |pdf=|usr=}}
| + | |