|
|
(11 dazwischenliegende Versionen von einem Benutzer werden nicht angezeigt) |
Zeile 1: |
Zeile 1: |
| {{pnc}}__NOTOC__ | | {{pnc}}__NOTOC__ |
| | | |
− | ===Antibody-dependent enhancement===
| + | {{ft|I}} |
− | {{tp|p=32361326|t=2020. Current studies of convalescent plasma therapy for COVID-19 may underestimate risk of antibody-dependent enhancement.|pdf=|usr=008}} | + | *'''[[Antibody-dependent enhancement ]]''' |
− | {{ttp|p=32504046|t=2020. Implications of antibody-dependent enhancement of infection for SARS-CoV-2 countermeasures.|pdf=|usr=007}}
| + | *'''[[Herd immunity ]]''' |
− | {{ttp|p=32092539|t=2020. Is COVID-19 receiving ADE from other coronaviruses?|pdf=|usr=}}
| + | *'''[[Neutralizing antibodies ]]''' |
− | {{tp|p=32268188|t=ä. It is too soon to attribute ADE to COVID-19 |pdf=|usr=}}
| + | *'''[[Innate immunology ]]''' |
− | {{ttp|p=31826992|t=2020. Molecular Mechanism for Antibody-Dependent Enhancement of Coronavirus Entry |pdf=|usr=}}''antibodies target one serotype of viruses but only subneutralize another, leading to antibody-dependend enhancement of the latter viruses.''
| + | *'''[[Integrative work ]]''' ''reviews, intertopic'' |
− | {{ttp|p=32317716|t=ä. The potential danger of suboptimal antibody responses in COVID-19 |pdf=|usr=}} ade
| + | *'''[[Cov2 modulates the immune system ]]''' |
− | {{tp|p=32346094|t=ä. COVID-19 vaccine design: the Janus face of immune enhancement |pdf=|usr=}}
| + | *'''[[Immune cell subpopulations ]]''' |
− | {{tp|p=32303697|t=ä. Will we see protection or reinfection in COVID-19?|pdf=|usr=}}
| + | *'''[[T cell exhaustion ]]''' |
− | {{tp|p=32438257|t=2020. SARS-CoV-2 and enhancing antibodies |pdf=|usr=}}
| + | *'''[[NK cells ]]''' |
− | {{ttp|p=32408068|t=2020. What about the original antigenic sin of the humans versus SARS-CoV-2?|pdf=|usr=}}''the term «original antigenic sin» (OAS) was coined by T. Francis Jr at the Michigan University in the late 1950s to describe patterns of antibody response to influenza vaccination...''
| + | |
− | {{tp|p=32436320|t=2020. The role of SARS-CoV-2 antibodies in COVID-19: Healing in most, harm at times.|pdf=|usr=007}}
| + | |
− | {{tp|p=32506725|t=2020. Dengue Fever, COVID-19 (SARS-CoV-2), and Antibody-Dependent Enhancement (ADE): A Perspective.|pdf=|usr=007}}
| + | |
− | {{tp|p=32529906|t=2020. Serological differentiation between COVID-19 and SARS infections.|pdf=|usr=008}}
| + | |
− | {{tp|p=32380903|t=2020. Lack of cross-neutralization by SARS patient sera towards SARS-CoV-2.|pdf=|usr=008}}
| + | |
− | {{tp|p=32426212|t=2020. Cross-reactive Antibody Response between SARS-CoV-2 and SARS-CoV Infections.|pdf=|usr=008}}
| + | |
− | {{tp|p=32526272|t=2020. Antibody-dependent enhancement and COVID-19: Moving toward acquittal.|pdf=|usr=008}}
| + | |
− | {{tp|p=32590062|t=2020. lall? Due diligence warranted for ADE in COVID-19.|pdf=|usr=010}}
| + | |
− | {{ttp|p=32595955|t=2020. Expected immune recognition of COVID-19 virus by memory from earlier infections with common coronaviruses in a large part of the world population.|pdf=|usr=011}}
| + | |
− | {{tp|p=32582200|t=2020. Antibody Dependent Enhancement Due to Original Antigenic Sin and the Development of SARS.|pdf=|usr=011}}
| + | |
| | | |
− | | + | *'''[[MDSC myeloid-derived suppressor cells]] |
− | | + | *'''[[Antiviral immune response ]]''' |
− | ===Herd immunity===
| + | *'''[[Antiviral mediators ]]''' |
− | {{tp|p=32438622|t=2020. Dynamics of Population Immunity Due to the Herd Effect in the COVID-19 Pandemic.|pdf=|usr=007}}
| + | *'''[[Immunopathology ]]''' |
− | {{tp|p=32391855|t=2020. COVID-19 and Postinfection Immunity: Limited Evidence, Many Remaining Questions.|pdf=|usr=007}}
| + | *'''[[Secondary autoimmunity ]]''' |
− | {{tp|p=32510562|t=2020. Long-term and herd immunity against SARS-CoV-2: implications from current and past knowledge.|pdf=|usr=007}}
| + | *'''[[Thymus, Immunosenescence ]]''' |
− | {{tp|p=32418947|t=2020. Does immune privilege result in recovered patients testing positive for COVID-19 again?|pdf=|usr=007}}
| + | *'''[[Eosinophils ]]''' |
− | {{tp|p=32372779|t=2020. Do you become immune once you have been infected?|pdf=|usr=}}
| + | *'''[[Microbiome ]]''' |
− | {{tp|p=32433946|t=2020. Herd Immunity: Understanding COVID-19.|pdf=|usr=008}}
| + | *'''[[Pneumococcal synergism]]''' -new- |
− | {{tp|p=32509257|t=2020. SARS-CoV-2, "common cold" coronaviruses' cross-reactivity and "herd immunity": The razor of Ockham (1285-1347)?|pdf=|usr=008}}
| + | *'''[[Bio-misc ]]''' ''on topic biology papers which cannot be indexed by title'' |
− | {{tp|p=32397700|t=2020. [Analysis of application of herd immunity as a control strategy for COVID-19].|pdf=|usr=007}}
| + | *'''[[Hematology ]]''' |
− | {{tp|p=32534627|t=2020. Have deaths from COVID-19 in Europe plateaued due to herd immunity?|pdf=|usr=009}}
| + | *'''[[Cytokine_storm,_hemophagocytic_lymphohistiocytosis,_macrophage_activation_syndrome|Cytokine storm ]]''' |
− | {{tp|p=32434946|t=2020. SARS-CoV-2 infection protects against rechallenge in rhesus macaques.|pdf=|usr=009}}
| + | *'''[[Candidate_Compounds_Covid19 |Immunopharmacology ]]''' |
− | {{tp|p=32585285|t=2020. Herd Immunity and Vaccination of children for COVID19.|pdf=|usr=010}}
| + | *'''[[Diagnosis_(Laboratory) |Clinical Laboratory Dx]]''' |
− | {{tp|p=32576668|t=2020. A mathematical model reveals the influence of population heterogeneity on herd immunity to SARS-CoV-2.|pdf=|usr=010}}
| + | |
− | {{tp|p=32538831|t=2020. Herd immunity or suppression strategy to combat COVID-19.|pdf=|usr=011}}
| + | |
− | | + | |
− | ===Neutralizing antibodies===
| + | |
− | {{tp|p=32454513|t=2020. Human neutralizing antibodies elicited by SARS-CoV-2 infection.|pdf=|usr=007}}
| + | |
− | {{tp|p=32454512|t=2020. A human neutralizing antibody targets the receptor binding site of SARS-CoV-2.|pdf=|usr=007}}
| + | |
− | {{tp|p=32497196|t=2020. Neutralizing Antibodies Responses to SARS-CoV-2 in COVID-19 Inpatients and Convalescent Patients.|pdf=|usr=007}}
| + | |
− | {{ttp|p=32073157|t=2020. Antibodies to coronaviruses are higher in older compared with younger adults and binding antibodies are more sensitive than neutralizing antibodies in identifying coronavirus?associated illnesses |pdf=|usr=}}
| + | |
− | {{tp|p=32515685|t=2020. Dynamic surveillance of SARS-CoV-2 shedding and neutralizing antibody in children with COVID-19.|pdf=|usr=008}}
| + | |
− | {{tp|p=32514035|t=2020. Dissecting antibody-mediated protection against SARS-CoV-2.|pdf=|usr=009}}
| + | |
− | {{tp|p=32561270|t=2020. Analysis of a SARS-CoV-2-Infected Individual Reveals Development of Potent Neutralizing Antibodies with Limited Somatic Mutation.|pdf=|usr=011}}
| + | |
− | | + | |
− | | + | |
− | ===Innate immunology===
| + | |
− | {{ttp|p=32291557|t=ä. SARS-CoV-2-encoded nucleocapsid protein acts as a viral suppressor of RNA interference in cells |pdf=|usr=}}
| + | |
− | {{tp|p=32198201|t=2020. Coronavirus endoribonuclease targets viral polyuridine sequences to evade activating host sensors |pdf=|usr=}}
| + | |
− | {{tp|p=32374430|t=2020. DC/L-SIGNs of Hope in the COVID-19 Pandemic |pdf=|usr=}}
| + | |
− | {{tp|p=32361001|t=ä. Bioinformatic analysis and identification of single-stranded RNA sequences recognized by TLR7/8 in the SARS-CoV-2, SARS-CoV, and MERS-CoV genomes |pdf=|usr=}}
| + | |
− | {{tp|p=32248387|t=ä. Use of DAMPs and SAMPs as Therapeutic Targets or Therapeutics: A Note of Caution |pdf=|usr=}}
| + | |
− | {{ttp|p=32407669|t=ä. Heightened Innate Immune Responses in the Respiratory Tract of COVID-19 Patients |pdf=|usr=}}
| + | |
− | {{tp|p=32456409|t=2020. A theory on SARS-COV-2 susceptibility: reduced TLR7-activity as a mechanistic link between men, obese and elderly.|pdf=|usr=007}}
| + | |
− | {{ttp|p=32156572|t=2020. Viroporins and inflammasomes: A key to understand virus-induced inflammation |pdf=|usr=}}
| + | |
− | {{ttp|p=32454408|t=2020. COVID-19 as a STING disorder with delayed over-secretion of interferon-beta.|pdf=|usr=008}}
| + | |
− | {{tp|p=32524333|t=2020. COVID 19: a clue from innate immunity.|pdf=|usr=008}}
| + | |
− | {{tp|p=32464098|t=2020. The Innate Immune System: Fighting on the Front Lines or Fanning the Flames of COVID-19?|pdf=|usr=008}}
| + | |
− | {{ttp|p=32599245|t=2020. Targeting hub genes and pathways of innate immune response in COVID-19: A network biology perspective.|pdf=|usr=011}}
| + | |
− | {{ttp|p=32574272|t=2020. Innate Immune Signaling and Proteolytic Pathways in the Resolution or Exacerbation of SARS-CoV-2 in Covid-19: Key Therapeutic Targets?|pdf=|usr=011}}
| + | |
− | | + | |
− | | + | |
− | ===integrative work===
| + | |
− | *[https://www.cell.com/action/showPdf?pii=S1074-7613%2820%2930183-7 rev. on covid immunology] | + | |
− | {{tp|p=32205856|t=2020. COVID-19 infection: the perspectives on immune responses |pdf=|usr=}}
| + | |
− | {{tp|p=32359396|t=ä. A Dynamic Immune Response Shapes COVID-19 Progression |pdf=|usr=}}
| + | |
− | {{tp|p=C7064018|t=ä. Coronavirus infections: Epidemiological, clinical and immunological features and hypotheses |pdf=|usr=}}
| + | |
− | {{ttp|p=C7200337|t=ä. Immunology of COVID-19: current state of the science |pdf=|usr=}}
| + | |
− | {{tp|p=32505227|t=2020. Immunology of COVID-19: Current State of the Science.|pdf=|usr=007}}
| + | |
− | {{tp|p=32469225|t=2020. COVID-19 and the immune system.|pdf=|usr=007}}
| + | |
− | {{ttp|p=32436629|t=2020. High COVID-19 virus replication rates, the creation of antigen-antibody immune complexes and indirect haemagglutination resulting in thrombosis.|pdf=|usr=007}}
| + | |
− | {{tp|p=32507543|t=2020. Spiking Pandemic Potential: Structural and Immunological Aspects of SARS-CoV-2.|pdf=|usr=007}}
| + | |
− | {{ttp|p=32504757|t=2020. Protective role of ACE2 and its downregulation in SARS-CoV-2 infection leading to Macrophage Activation Syndrome: Therapeutic implications.|pdf=|usr=007}}
| + | |
− | {{tp|p=32493812|t=2020. Role of Aging and the Immune Response to Respiratory Viral Infections: Potential Implications for COVID-19.|pdf=|usr=007}}
| + | |
− | {{tp|p=32470151|t=2020. The perplexing question of trained immunity versus adaptive memory in COVID-19.|pdf=|usr=007}}
| + | |
− | {{tp|p=32472706|t=2020. The Long-Standing History of Corynebacterium Parvum, Immunity and Viruses.|pdf=|usr=007}}
| + | |
− | {{tp|p=32213336|t=ä. SARS-CoV-2: virus dynamics and host response |pdf=|usr=}}
| + | |
− | {{tp|p=32437933|t=2020. Viral dynamics in asymptomatic patients with COVID-19.|pdf=|usr=008}}
| + | |
− | {{tp|p=32407836|t=2020. Longitudinal hematologic and immunologic variations associated with the progression of COVID-19 patients in China.|pdf=|usr=008}}
| + | |
− | {{tp|p=32498686|t=2020. Immunologic aspects of characteristics, diagnosis, and treatment of coronavirus disease 2019 (COVID-19).|pdf=|usr=008}}
| + | |
− | {{tp|p=32514817|t=2020. Immune Responses to SARS-CoV, MERS-CoV and SARS-CoV-2.|pdf=|usr=008}}
| + | |
− | {{tp|p=32460144|t=2020. Altered cytokine levels and immune responses in patients with SARS-CoV-2 infection and related conditions.|pdf=|usr=008}}
| + | |
− | {{tp|p=32417709|t=2020. Mechanism of inflammatory response in associated comorbidities in COVID-19.|pdf=|usr=008}}
| + | |
− | {{tp|p=32444400|t=2020. COVID-19 and the nicotinic cholinergic system.|pdf=|usr=008}}
| + | |
− | {{tp|p=32413330|t=2020. Detection of SARS-CoV-2-Specific Humoral and Cellular Immunity in COVID-19 Convalescent Individuals.|pdf=|usr=008}}
| + | |
− | {{tp|p=32514174|t=2020. A single-cell atlas of the peripheral immune response in patients with severe COVID-19.|pdf=|usr=008}}
| + | |
− | {{tp|p=32489708|t=2020. Immune Characteristics of Patients with Coronavirus Disease 2019 (COVID-19).|pdf=|usr=008}}
| + | |
− | {{tp|p=32396996|t=2020. Immune response to SARS-CoV-2 and mechanisms of immunopathological changes in COVID-19.|pdf=|usr=008}}
| + | |
− | {{ttp|p=32454136|t=2020. The role of IgA in COVID-19.|pdf=|usr=008}}
| + | |
− | {{ttp|p=32526273|t=2020. A plea for the pathogenic role of immune complexes in severe Covid-19.|pdf=|usr=008}}
| + | |
− | {{tp|p=32502542|t=2020. The immune system and COVID-19: Friend or foe?|pdf=|usr=009}}
| + | |
− | {{tp|p=32505066|t=2020. COVID-19: Loss of bridging between innate and adaptive immunity?|pdf=|usr=009}}
| + | |
− | {{tp|p=32461671|t=2020. Innate T cells in COVID-19: friend or foe?|pdf=|usr=009}}
| + | |
− | {{tp|p=32533292|t=2020. Targeting the immunology of coronavirus disease-19: synchronization creates symphony.|pdf=|usr=009}}
| + | |
− | {{tp|p=32445403|t=2020. SARS-CoV-2 infection-induced immune responses: Friends or foes?|pdf=|usr=009}}
| + | |
− | {{tp|p=32510470|t=2020. Is innate immunity our best weapon for flattening the curve?|pdf=|usr=008}}
| + | |
− | {{tp|p=32574709|t=2020. COVID-19 pneumonia: CD8(+) T and NK cells are decreased in number but compensatory increased in cytotoxic potential.|pdf=|usr=010}}
| + | |
− | {{tp|p=32578831|t=2020. Human Leukocyte Transcriptional Response to SARS-CoV-2 Infection.|pdf=|usr=010}}
| + | |
− | {{tp|p=32584441|t=2020. Immunology of COVID-19: mechanisms, clinical outcome, diagnostics and perspectives - a report of the European Academy of Allergy and Clinical Immunology (EAACI).|pdf=|usr=010}}
| + | |
− | {{tp|p=32592406|t=2020. Immune response in children with COVID-19 is characterized by lower levels of T cell activation than infected adults.|pdf=|usr=010}}
| + | |
− | {{ttp|p=32579268|t=2020. SARS-CoV-2-reactive interferon-gamma-producing CD8+ T cells in patients hospitalized with coronavirus disease 2019.|pdf=|usr=011}}
| + | |
− | {{tp|p=32591408|t=2020. Phenotype and kinetics of SARS-CoV-2-specific T cells in COVID-19 patients with acute respiratory distress syndrome.|pdf=|usr=011}}
| + | |
− | {{tp|p=32576386|t=2020. Deciphering the TCR Repertoire to Solve the COVID-19 Mystery.|pdf=|usr=011}}
| + | |
− | {{tp|p=32582743|t=2020. Immune-Inflammatory Parameters in COVID-19 Cases: A Systematic Review and Meta-Analysis.|pdf=|usr=011}}
| + | |
− | | + | |
− | | + | |
− | | + | |
− | ===covid modulates the immune system===
| + | |
− | {{ttp|p=32514047|t=2020. Expansion of myeloid-derived suppressor cells in patients with severe coronavirus disease (COVID-19).|pdf=|usr=008}}
| + | |
− | {{ttp|p=32479746|t=2020. Host-Viral Infection Maps Reveal Signatures of Severe COVID-19 Patients.|pdf=|usr=008}}
| + | |
− | {{ttp|p=32529952|t=2020. SARS-CoV-2 nsp13, nsp14, nsp15 and orf6 function as potent interferon antagonists.|pdf=|usr=008}}
| + | |
− | {{tp|p=32364527|t=2020. Immune environment modulation in pneumonia patients caused by coronavirus: SARS-CoV, MERS-CoV and SARS-CoV-2 |pdf=|usr=}}
| + | |
− | {{tp|p=32172672|t=2020. A tug-of-war between severe acute respiratory syndrome coronavirus 2 and host antiviral defence: lessons from other pathogenic viruses |pdf=|usr=}}
| + | |
− | {{tp|p=32315725|t=ä. Suppressed T cell-mediated immunity in patients with COVID-19: a clinical retrospective study in Wuhan, China |pdf=|usr=}}
| + | |
− | {{ttp|p=32355328|t=ä. Impaired interferon signature in severe COVID-19 |pdf=|usr=}}
| + | |
− | {{tp|p=32375560|t=2020. SARS-CoV-2-Induced Immune Dysregulation and Myocardial Injury Risk in China: Insights from the ERS-COVID-19 Study |pdf=|usr=}}
| + | |
− | {{tp|p=32376308|t=ä. Lymphopenia is associated with severe coronavirus disease 2019 (COVID-19) infections: A systemic review and meta-analysis |pdf=|usr=}}
| + | |
− | {{ttp|p=32236983|t=2020. Why the immune system fails to mount an adaptive immune response to a COVID-19 infection |pdf=|usr=}}
| + | |
− | {{ttp|p=32286536|t=ä. Coronaviruses hijack the complement system |pdf=|usr=}}''host complement activator MASP2 as a target of the N protein of all three viruses''
| + | |
− | {{tp|p=32463803|t=2020. Impaired immune cell cytotoxicity in severe COVID-19 is IL-6 dependent.|pdf=|usr=007}}
| + | |
− | {{tp|p=32492165|t=2020. Clinical and Immune Features of Hospitalized Pediatric Patients With Coronavirus Disease 2019 (COVID-19) in Wuhan, China.|pdf=|usr=007}}
| + | |
− | {{tp|p=32514592|t=2020. Severe COVID-19 is associated with deep and sustained multifaceted cellular immunosuppression.|pdf=|usr=008}}
| + | |
− | {{tp|p=32456696|t=2020. COVID-19 patients exhibit less pronounced immune suppression compared with bacterial septic shock patients.|pdf=|usr=008}}
| + | |
− | {{tp|p=32502135|t=2020. Reduced monocytic HLA-DR expression indicates immunosuppression in critically ill COVID-19 patients.|pdf=|usr=008}}
| + | |
− | {{tp|p=32532524|t=2020. SARS-CoV-2-A Tough Opponent for the Immune System.|pdf=|usr=008}}
| + | |
− | {{tp|p=32416070|t=2020. Imbalanced Host Response to SARS-CoV-2 Drives Development of COVID-19.|pdf=|usr=008}}
| + | |
− | {{tp|p=32513989|t=2020. The inhibition of IL-2/IL-2R gives rise to CD8(+) T cell and lymphocyte decrease through JAK1-STAT5 in critical patients with COVID-19 pneumonia.|pdf=|usr=008}}
| + | |
− | {{tp|p=32409741|t=2020. Modulation of immune crosstalk in COVID-19.|pdf=|usr=009}}
| + | |
− | {{tp|p=32504059|t=2020. Many paths to COVID-19 lymphocyte dysfunction.|pdf=|usr=009}}
| + | |
− | {{tp|p=32528136|t=2020. Considering how biological sex impacts immune responses and COVID-19 outcomes.|pdf=|usr=009}}
| + | |
− | {{tp|p=32587367|t=2020. Potential contribution of increased soluble IL-2R to lymphopenia in COVID-19 patients.|pdf=|usr=010}}
| + | |
− | {{tp|p=32554697|t=2020. Inactivating Three Interferon Antagonists Attenuates Pathogenesis of an Enteric Coronavirus.|pdf=|usr=011}}
| + | |
− | | + | |
− | | + | |
− | ===immune cell subpopulations===
| + | |
− | {{tp|p=32282871|t=ä. Inflammatory Response Cells During Acute Respiratory Distress Syndrome in Patients With Coronavirus Disease 2019 (COVID-19) |pdf=|usr=}}
| + | |
− | {{tp|p=32325421|t=2020. Increased expression of CD8 marker on T-cells in COVID-19 patients |pdf=|usr=}}
| + | |
− | {{tp|p=32377375|t=2020. Immune cell profiling of COVID-19 patients in the recovery stage by single-cell sequencing |pdf=|usr=}}
| + | |
− | {{tp|p=32346099|t=ä. High-dimensional immune profiling by mass cytometry revealed immunosuppression and dysfunction of immunity in COVID-19 patients |pdf=|usr=}}
| + | |
− | {{tp|p=32339487|t=2020. Abnormalities of peripheral blood system in patients with COVID-19 in Wenzhou, China |pdf=|usr=}}
| + | |
− | {{tp|p=32361250|t=2020. Longitudinal characteristics of lymphocyte responses and cytokine profiles in the peripheral blood of SARS-CoV-2 infected patients |pdf=|usr=}}
| + | |
− | {{tp|p=32228226|t=2020. Transcriptomic characteristics of bronchoalveolar lavage fluid and peripheral blood mononuclear cells in COVID-19 patients |pdf=|usr=}}
| + | |
− | {{tp|p=32196410|t=2020. Hypothesis for potential pathogenesis of SARS-CoV-2 infection?a review of immune changes in patients with viral pneumonia |pdf=|usr=}}
| + | |
− | {{tp|p=32333914|t=ä. A possible role for B cells in COVID-19?: Lesson from patients with Agammaglobulinemia |pdf=|usr=}}
| + | |
− | {{tp|p=32344320|t=ä. The clinical course and its correlated immune status in COVID-19 pneumonia |pdf=|usr=}}
| + | |
− | {{tp|p=32325129|t=ä. The profile of peripheral blood lymphocyte subsets and serum cytokines in children with 2019 novel coronavirus pneumonia |pdf=|usr=}}
| + | |
− | {{tp|p=32283159|t=ä. Lymphocyte subset (CD4+, CD8+) counts reflect the severity of infection and predict the clinical outcomes in patients with COVID-19 |pdf=|usr=}}
| + | |
− | {{tp|p=32227123|t=ä. Characteristics of Peripheral Lymphocyte Subset Alteration in COVID-19 Pneumonia |pdf=|usr=}}
| + | |
− | {{tp|p=32343510|t=2020. COVID-19: are T lymphocytes simply watching?|pdf=|usr=}}
| + | |
− | {{tp|p=32379887|t=ä. T cell subset counts in peripheral blood can be used as discriminatory biomarkers for diagnosis and severity prediction of COVID-19 |pdf=|usr=}}
| + | |
− | {{tp|p=32297671|t=2020. Relationships among lymphocyte subsets, cytokines, and the pulmonary inflammation index in coronavirus (COVID-19) infected patients |pdf=|usr=}}
| + | |
− | {{tp|p=32352397|t=2020. The hemocyte counts as a potential biomarker for predicting disease progression in COVID-19: a retrospective study |pdf=|usr=}}
| + | |
− | {{tp|p=32379199|t=2020. A Typical Case of Critically Ill Infant of Coronavirus Disease 2019 With Persistent Reduction of T Lymphocytes |pdf=|usr=}}
| + | |
− | {{tp|p=32296069|t=2020. Lymphopenia predicts disease severity of COVID-19: a descriptive and predictive study |pdf=|usr=}}
| + | |
− | {{tp|p=32407057|t=2020. Peripheral lymphocyte subset monitoring in COVID19 patients: a prospective Italian real-life case series.|pdf=|usr=007}}
| + | |
− | {{tp|p=32297828|t=2020. Correlation Between Relative Nasopharyngeal Virus RNA Load and Lymphocyte Count Disease Severity in Patients with COVID-19 |pdf=|usr=}}
| + | |
− | {{tp|p=32370466|t=2020. Characteristics of peripheral blood leukocyte differential counts in patients with COVID-19 |pdf=|usr=}}
| + | |
− | {{tp|p=32114745|t=2020. Characteristics of peripheral blood leukocyte differential counts in patients with COVID-19 |pdf=|usr=}}
| + | |
− | {{tp|p=32377375|t=2020. Immune cell profiling of COVID-19 patients in the recovery stage by single-cell sequencing |pdf=|usr=}}
| + | |
− | {{tp|p=32361250|t=2020. Longitudinal characteristics of lymphocyte responses and cytokine profiles in the peripheral blood of SARS-CoV-2 infected patients |pdf=|usr=}}
| + | |
− | {{ttp|p=32376308|t=2020. Lymphopenia is associated with severe coronavirus disease 2019 (COVID-19) infections: A systemic review and meta-analysis |pdf=|usr=}}
| + | |
− | {{tp|p=32458561|t=2020. Lymphopenia in COVID-19: Therapeutic opportunities.|pdf=|usr=007}}
| + | |
− | {{tp|p=32420610|t=2020. Temporal changes in immune blood cell parameters in COVID-19 infection and recovery from severe infection.|pdf=|usr=007}}
| + | |
− | {{tp|p=32470153|t=2020. Characteristics of inflammatory factors and lymphocyte subsets in patients with severe COVID-19.|pdf=|usr=007}}
| + | |
− | {{tp|p=32474608|t=2020. Decreased B cells on admission was associated with prolonged viral RNA shedding from respiratory tract in Coronavirus Disease 2019: a case control study.|pdf=|usr=007}}
| + | |
− | {{tp|p=32483488|t=2020. Lymphopenia in severe coronavirus disease-2019 (COVID-19): systematic review and meta-analysis.|pdf=|usr=008}}
| + | |
− | {{tp|p=32382776|t=2020. Signals of Th2 immune response from COVID-19 patients requiring intensive care.|pdf=|usr=008}}
| + | |
− | {{tp|p=32417210|t=2020. The underlying changes and predicting role of peripheral blood inflammatory cells in severe COVID-19 patients: A sentinel?|pdf=|usr=008}}
| + | |
− | {{tp|p=32405080|t=2020. Decreased T cell populations contribute to the increased severity of COVID-19.|pdf=|usr=008}}
| + | |
− | {{tp|p=32407466|t=2020. An inflammatory profile correlates with decreased frequency of cytotoxic cells in COVID-19.|pdf=|usr=008}}
| + | |
− | {{tp|p=32569607|t=2020. Lymphopenia during the COVID-19 infection: What it shows and what can be learned.|pdf=|usr=010}}
| + | |
− | {{tp|p=32543971|t=2020. Increased CD4/CD8 ratio as a risk factor for critical illness in coronavirus disease 2019 (COVID-19): a retrospective multicentre study.|pdf=|usr=010}}
| + | |
− | {{tp|p=32598880|t=2020. Less expression of CD4(+) and CD8(+) T cells might reflect the severity of infection and predict worse prognosis in patients with COVID-19: Evidence from a pooled analysis.|pdf=|usr=011}}
| + | |
− | {{tp|p=32569604|t=2020. CD4+T, CD8+T counts and severe COVID-19: A meta-analysis.|pdf=|usr=011}}
| + | |
− | {{tp|p=32608572|t=2020. Peripheral lymphocyte subset alterations in COVID-19 patients.|pdf=|usr=011}}
| + | |
− | | + | |
− | | + | |
− | ===t cell exhaustion===
| + | |
− | {{tp|p=32249845|t=ä. Fighting COVID-19 exhausts T cells |pdf=|usr=}}
| + | |
− | {{tp|p=32479985|t=2020. Selective CD8 cell reduction by SARS-CoV-2 is associated with a worse prognosis and systemic inflammation in COVID-19 patients.|pdf=|usr=008}}
| + | |
− | {{ttp|p=32203188|t=ä. Functional exhaustion of antiviral lymphocytes in COVID-19 patients |pdf=|usr=}}
| + | |
− | {{ttp|p=32203186|t=ä. Elevated exhaustion levels and reduced functional diversity of T cells in peripheral blood may predict severe progression in COVID-19 patients |pdf=|usr=}}
| + | |
− | {{ttp|p=32203188|t=2020. Functional exhaustion of antiviral lymphocytes in COVID-19 patients |pdf=|usr=}}
| + | |
− | {{ttp|p=32203186|t=2020. Elevated exhaustion levels and reduced functional diversity of T cells in peripheral blood may predict severe progression in COVID-19 patients |pdf=|usr=}}
| + | |
− | {{tp|p=32414395|t=2020. COVID-19: room for treating T cell exhaustion?|pdf=|usr=008}}
| + | |
− | {{tp|p=32425950|t=2020. Reduction and Functional Exhaustion of T Cells in Patients With Coronavirus Disease 2019 (COVID-19).|pdf=|usr=008}}
| + | |
− | {{tp|p=32539816|t=2020. Response to "COVID-19: room for treating T cell exhaustion?"|pdf=|usr=010}}
| + | |
− | | + | |
− | | + | |
− | | + | |
− | ===nk cells===
| + | |
− | {{tp|p=32382127|t=ä. NKG2A and COVID-19: another brick in the wall |pdf=|usr=}}
| + | |
− | {{tp|p=32344314|t=2020. Innate immunity in COVID-19 patients mediated by NKG2A receptors, and potential treatment using Monalizumab, Cholroquine, and antiviral agents |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | ===plasmacytoid dendritic cells===
| + | |
− | {{tp|p=32298486|t=2020. Plasmacytoid lymphocytes in SARS-CoV-2 infection (Covid-19) |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | ===antiviral immune response===
| + | |
− | {{tp|p=32280952|t=ä. Good IgA bad IgG in SARS-CoV-2 infection?|pdf=|usr=}}
| + | |
− | {{tp|p=32353870|t=2020. The many faces of the anti-COVID immune response |pdf=|usr=}}
| + | |
− | {{tp|p=32358956|t=ä. Longitudinal Change of SARS-Cov2 Antibodies in Patients with COVID-19 |pdf=|usr=}}
| + | |
− | {{tp|p=31981224|t=2020. Coronavirus infections and immune responses |pdf=|usr=}}
| + | |
− | {{tp|p=32198005|t=2020. A case of COVID-19 and pneumonia returning from Macau in Taiwan: Clinical course and anti-SARS-CoV-2 IgG dynamic |pdf=|usr=}}
| + | |
− | {{tp|p=32284614|t=ä. Breadth of concomitant immune responses prior to patient recovery: a case report of non-severe COVID-19 |pdf=|usr=}}
| + | |
− | {{tp|p=32355329|t=ä. SARS-CoV-2-reactive T cells in patients and healthy donors |pdf=|usr=}}
| + | |
− | {{tp|p=32346091|t=ä. Neutralizing antibody response in mild COVID-19 |pdf=|usr=}}
| + | |
− | {{tp|p=32356908|t=2020. Mathematical modeling of interaction between innate and adaptive immune responses in COVID-19 and implications for viral pathogenesis |pdf=|usr=}}
| + | |
− | {{ttp|p=32343415|t=2020. Long-term coexistence of SARS-CoV-2 with antibody response in COVID-19 patients |pdf=|usr=}}
| + | |
− | {{tp|p=32330332|t=2020. SARS-CoV-2 infection in children - Understanding the immune responses and controlling the pandemic |pdf=|usr=}}
| + | |
− | {{tp|p=32267987|t=2020. Immune responses and pathogenesis of SARS?CoV?2 during an outbreak in Iran: Comparison with SARS and MERS |pdf=|usr=}}
| + | |
− | {{tp|p=32348715|t=2020. B Cells, Viruses, and the SARS-CoV-2/COVID-19 Pandemic of 2020 |pdf=|usr=}}
| + | |
− | {{tp|p=32382126|t=ä. Protective humoral immunity in SARS-CoV-2 infected pediatric patients |pdf=|usr=}}
| + | |
− | {{tp|p=32200654|t=2020. Time Kinetics of Viral Clearance and Resolution of Symptoms in Novel Coronavirus Infection |pdf=|usr=}}
| + | |
− | {{tp|p=32476607|t=2020. Delayed specific IgM antibody responses observed among COVID-19 patients with severe progression.|pdf=|usr=007}}
| + | |
− | {{tp|p=32449333|t=2020. (+)Ability of the immune system to fight viruses highlighted by cytometry and TCR clonotype assessments: lessons taken prior to COVID-19 virus pandemic outbreak.|pdf=|usr=007}}
| + | |
− | {{tp|p=32430094|t=2020. The dynamics of humoral immune responses following SARS-CoV-2 infection and the potential for reinfection.|pdf=|usr=007}}
| + | |
− | {{tp|p=32467617|t=2020. Serum IgA, IgM, and IgG responses in COVID-19.|pdf=|usr=007}}
| + | |
− | {{ttp|p=32467616|t=2020. More bricks in the wall against SARS-CoV-2 infection: involvement of gamma9delta2 T cells.|pdf=|usr=007}}
| + | |
− | {{ttp|p=32463434|t=2020. Metatranscriptomic Characterization of COVID-19 Identified A Host Transcriptional Classifier Associated With Immune Signaling.|pdf=|usr=007}}
| + | |
− | {{tp|p=32398307|t=2020. Distinct features of SARS-CoV-2-specific IgA response in COVID-19 patients.|pdf=|usr=008}}
| + | |
− | {{tp|p=32425634|t=2020. The dynamics of antibodies to SARS-CoV-2 in a case of SARS-CoV-2 infection.|pdf=|usr=008}}
| + | |
− | {{tp|p=32383183|t=2020. A comparison study of SARS-CoV-2 IgG antibody between male and female COVID-19 patients: A possible reason underlying different outcome between sex.|pdf=|usr=008}}{{tp|p=32521002|t=2020. Antibody profiles in mild and severe cases of COVID-19.|pdf=|usr=008}}
| + | |
− | {{tp|p=32399213|t=2020. Dynamics of peripheral immune cells and their HLA-G and receptor expressions in a patient suffering from critical COVID-19 pneumonia to convalescence.|pdf=|usr=008}}
| + | |
− | {{tp|p=32515684|t=2020. Patterns of IgG and IgM antibody response in COVID-19 patients.|pdf=|usr=008}}
| + | |
− | {{ttp|p=32425955|t=2020. Potential SARS-CoV-2 Preimmune IgM Epitopes.|pdf=|usr=008}}
| + | |
− | {{tp|p=32439770|t=2020. T cells found in coronavirus patients 'bode well' for long-term immunity.|pdf=|usr=008}}
| + | |
− | {{ttp|p=32473127|t=2020. Targets of T Cell Responses to SARS-CoV-2 Coronavirus in Humans with COVID-19 Disease and Unexposed Individuals.|pdf=|usr=008}}
| + | |
− | {{tp|p=32513850|t=2020. Early Insights into Immune Responses during COVID-19.|pdf=|usr=008}}
| + | |
− | {{tp|p=32544611|t=2020. Development of child immunity in the context of COVID-19 pandemic.|pdf=|usr=011}}
| + | |
− | {{tp|p=32572527|t=2020. SARS-CoV-2 viral loads and serum IgA/IgG immune responses in critically ill COVID-19 patients.|pdf=|usr=010}}
| + | |
− | {{tp|p=32607314|t=2020. Assessing Immune Response to SARS-CoV-2 Infection.|pdf=|usr=011}}
| + | |
− | {{tp|p=32574261|t=2020. Humoral Immune Responses in COVID-19 Patients: A Window on the State of the Art.|pdf=|usr=011}}
| + | |
− | | + | |
− | | + | |
− | ===antiviral mediators===
| + | |
− | {{tp|p=32422144|t=2020. Perforin and resistance to SARS coronavirus 2.|pdf=|usr=008}}
| + | |
− | {{ttp|p=32437749|t=2020. Human Intestinal Defensin 5 Inhibits SARS-CoV-2 Invasion by Cloaking ACE2.|pdf=|usr=008}}
| + | |
− | | + | |
− | | + | |
− | ===mediators===
| + | |
− | {{tp|p=32360285|t=ä. Type I IFN immunoprofiling in COVID-19 patients |pdf=|usr=}}
| + | |
− | {{ttp|p=32376393|t=ä. Interleukin-17A (IL-17A), a key molecule of innate and adaptive immunity, and its potential involvement in COVID-19-related thrombotic and vascular mechanisms |pdf=|usr=}}
| + | |
− | {{ttp|p=32305501|t=ä. The Potential Role of Th17 Immune Responses in Coronavirus Immunopathology and Vaccine-induced Immune Enhancement |pdf=|usr=}}
| + | |
− | {{tp|p=30715745|t=2019. (+)Th17 serum cytokines in relation to laboratory?confirmed respiratory viral infection: A pilot study |pdf=|usr=}}
| + | |
− | {{tp|p=32414693|t=2020. Interleukin-6 levels in children developing SARS-CoV-2 infection |pdf=|usr=}}
| + | |
− | {{ttp|p=32421281|t=2020. Is there relationship between SARS-CoV 2 and the complement C3 and C4?|pdf=|usr=007}}
| + | |
− | {{tp|p=32437622|t=2020. Complement Activation During Critical Illness: Current Findings and an Outlook in the Era of COVID-19.|pdf=|usr=007}}
| + | |
− | {{tp|p=32475759|t=2020. IL-6: Relevance for immunopathology of SARS-CoV-2.|pdf=|usr=008}}
| + | |
− | {{tp|p=32457522|t=2020. Dysregulation of type I interferon responses in COVID-19.|pdf=|usr=009}}
| + | |
− | {{tp|p=32435059|t=2020. A suspicious role of interferon in the pathogenesis of SARS-CoV-2 by enhancing expression of ACE2.|pdf=|usr=009}}
| + | |
− | {{tp|p=32464309|t=2020. Type I interferons can be detected in respiratory swabs from SARS-Cov-2 infected patients.|pdf=|usr=008}}
| + | |
− | {{tp|p=32553163|t=2020. Modulation of Extracellular ISG15 Signaling by Pathogens and Viral Effector Proteins.|pdf=|usr=010}}
| + | |
− | {{tp|p=32579952|t=2020. Hyperferritinemia in critically ill COVID-19 patients - Is ferritin the product of inflammation or a pathogenic mediator?|pdf=|usr=011}}
| + | |
− | {{tp|p=32540458|t=2020. Elevated nucleoprotein-induced interferon-gamma release in COVID-19 patients detected in a SARS-CoV-2 enzyme-linked immunosorbent spot assay.|pdf=|usr=011}}
| + | |
− | {{tp|p=32563194|t=2020. Serum Cytokine and Chemokine profile in Relation to the Severity of Coronavirus disease 2019 (COVID-19) in China.|pdf=|usr=011}}
| + | |
− | {{ttp|p=32595654|t=2020. Interferon-Induced Transmembrane Protein (IFITM3) Is Upregulated Explicitly in SARS-CoV-2 Infected Lung Epithelial Cells.|pdf=|usr=011}}
| + | |
− | {{tp|p=32574271|t=2020. The Biology of Lactoferrin, an Iron-Binding Protein That Can Help Defend Against Viruses and Bacteria.|pdf=|usr=011}}
| + | |
− | | + | |
− | | + | |
− | | + | |
− | ===immunopathology===
| + | |
− | {{tp|p=32371101|t=ä. The correlation between SARS-CoV-2 infection and rheumatic disease |pdf=|usr=}}
| + | |
− | {{tp|p=32205186|t=2020. COVID-19 infection and rheumatoid arthritis: Faraway, so close!|pdf=|usr=}}
| + | |
− | {{tp|p=32308263|t=2020. CoViD-19 Immunopathology and Immunotherapy |pdf=|usr=}}
| + | |
− | {{tp|p=32320677|t=ä. Complex Immune Dysregulation in COVID-19 Patients with Severe Respiratory Failure |pdf=|usr=}}
| + | |
− | {{tp|p=32161940|t=ä. Dysregulation of immune response in patients with COVID-19 in Wuhan, China |pdf=|usr=}}
| + | |
− | {{tp|p=32282863|t=ä. Molecular immune pathogenesis and diagnosis of COVID-19 |pdf=|usr=}}
| + | |
− | {{tp|p=32321823|t=2020. COVID-19: an Immunopathological View |pdf=|usr=}}
| + | |
− | {{tp|p=32273594|t=ä. COVID-19: immunopathology and its implications for therapy |pdf=|usr=}}
| + | |
− | {{tp|p=32303696|t=ä. Macrophages: a Trojan horse in COVID-19?|pdf=|usr=}}
| + | |
− | {{ttp|p=32376901|t=ä. Pathological inflammation in patients with COVID-19: a key role for monocytes and macrophages |pdf=|usr=}}
| + | |
− | {{tp|p=32423059|t=2020. Recent Insight into SARS-CoV2 Immunopathology and Rationale for Potential Treatment and Preventive Strategies in COVID-19.|pdf=|usr=007}}
| + | |
− | {{tp|p=32485101|t=2020. Vascular Endothelial Growth Factor (VEGF) as a Vital Target for Brain Inflammation during the COVID-19 Outbreak.|pdf=|usr=007}}
| + | |
− | {{tp|p=32423917|t=2020. COVID-19 as an Acute Inflammatory Disease.|pdf=|usr=007}}
| + | |
− | {{ttp|p=32512289|t=2020. Neutralizing antibodies mediate virus-immune pathology of COVID-19.|pdf=|usr=007}}
| + | |
− | {{tp|p=32398875|t=2020. Single-cell landscape of bronchoalveolar immune cells in patients with COVID-19.|pdf=|usr=007}}
| + | |
− | {{tp|p=32391668|t=2020. [Dynamic inflammatory response in a critically ill COVID-19 patient treated with corticosteroids].|pdf=|usr=007}}
| + | |
− | {{ttp|p=32498376|t=2020. Neutrophils and Neutrophil Extracellular Traps Drive Necroinflammation in COVID-19.|pdf=|usr=007}}
| + | |
− | {{tp|p=32460357|t=2020. Immunopathological characteristics of coronavirus disease 2019 cases in Guangzhou, China.|pdf=|usr=007}}
| + | |
− | {{ttp|p=32492530|t=2020. Aberrant hyperactivation of cytotoxic T-cell as a potential determinant of COVID-19 severity.|pdf=|usr=008}}
| + | |
− | {{tp|p=32389590|t=2020. COVID-19: Unanswered questions on immune response and pathogenesis.|pdf=|usr=008}}
| + | |
− | {{tp|p=32422146|t=2020. Type 2 inflammation modulates ACE2 and TMPRSS2 in airway epithelial cells.|pdf=|usr=008}}
| + | |
− | {{tp|p=32521376|t=2020. SARS-CoV-2 (Covid-19): Interferon-epsilon may be responsible of decreased mortality in females.|pdf=|usr=008}}
| + | |
− | {{tp|p=32470851|t=2020. Role of oxidized LDL-induced "trained macrophages" in the pathogenesis of COVID-19 and benefits of pioglitazone: A hypothesis.|pdf=|usr=008}}
| + | |
− | {{tp|p=32454103|t=2020. Type I astrocytes and microglia induce a cytokine response in an encephalitic murine coronavirus infection.|pdf=|usr=008}}
| + | |
− | {{tp|p=32398804|t=2020. Is aberrant CD8+ T cell activation by hypertension associated with cardiac injury in severe cases of COVID-19?|pdf=|usr=008}}
| + | |
− | {{tp|p=32466999|t=2020. COVID-19 and asthma: To have or not to have T2 inflammation makes a difference?|pdf=|usr=009}}
| + | |
− | {{tp|p=32581077|t=2020. COVID-19 Hyperinflammation: What about Neutrophils?|pdf=|usr=010}}
| + | |
− | {{tp|p=32582303|t=2020. Neutrophils, Crucial, or Harmful Immune Cells Involved in Coronavirus Infection: A Bioinformatics Study.|pdf=|usr=011}}
| + | |
− | {{tp|p=32543740|t=2020. Dysregulation of the immune response affects the outcome of critical COVID-19 patients.|pdf=|usr=011}}
| + | |
− | {{tp|p=32573711|t=2020. Platelet Gene Expression and Function in COVID-19 Patients.|pdf=|usr=010}}
| + | |
− | {{tp|p=32579477|t=2020. Platelets and Immunity: Going Viral.|pdf=|usr=010}}
| + | |
− | {{tp|p=32545714|t=2020. Reaction Cycles of Halogen Species in the Immune Defense: Implications for Human Health and Diseases and the Pathology and Treatment of COVID-19.|pdf=|usr=011}}
| + | |
− | {{tp|p=32591762|t=2020. COVID-19 severity correlates with airway epithelium-immune cell interactions identified by single-cell analysis.|pdf=|usr=010}}
| + | |
− | {{tp|p=32584597|t=2020. Characterization of the Inflammatory Response to Severe COVID-19 Illness.|pdf=|usr=011}}
| + | |
− | {{tp|p=32574260|t=2020. Highlight of Immune Pathogenic Response and Hematopathologic Effect in SARS-CoV, MERS-CoV, and SARS-Cov-2 Infection.|pdf=|usr=011}}
| + | |
− | | + | |
− | ===secondary autoimmunity===
| + | |
− | {{tp|p=32292901|t=2020. Pathogenic priming likely contributes to serious and critical illness and mortality in COVID-19 via autoimmunity |pdf=|usr=}}
| + | |
− | {{tp|p=32220633|t=2020. Could Sars-coronavirus-2 trigger autoimmune and/or autoinflammatory mechanisms in genetically predisposed subjects?|pdf=|usr=}}
| + | |
− | {{tp|p=32315487|t=2020. Clinical and Autoimmune Characteristics of Severe and Critical Cases of COVID-19 |pdf=|usr=}}
| + | |
− | {{ttp|p=32314313|t=2020. Is COVID-19 a proteiform disease inducing also molecular mimicry phenomena?|pdf=|usr=}}
| + | |
− | {{tp|p=32389543|t=ä. COVID-19 and molecular mimicry: The Columbus? egg?|pdf=|usr=}}
| + | |
− | {{tp|p=32444414|t=2020. Antibodies against immunogenic epitopes with high sequence identity to SARS-CoV-2 in patients with autoimmune dermatomyositis.|pdf=|usr=007}}
| + | |
− | {{ttp|p=32535095|t=2020. Molecular mimicry may explain multi-organ damage in COVID-19.|pdf=|usr=008}}
| + | |
− | {{tp|p=32535093|t=2020. Covid-19 and autoimmunity.|pdf=|usr=008}}
| + | |
− | {{tp|p=32461193|t=2020. Potential antigenic cross-reactivity between SARS-CoV-2 and human tissue with a possible link to an increase in autoimmune diseases.|pdf=|usr=008}}
| + | |
− | {{tp|p=32504061|t=2020. SARS-CoV-2 cross-reactivity in healthy donors.|pdf=|usr=009}}
| + | |
− | {{tp|p=32387238|t=2020. Covid-19, induced activation of hemostasis, and immune reactions: Can an auto-immune reaction contribute to the delayed severe complications observed in some patients?|pdf=|usr=009}}
| + | |
− | {{tp|p=32563547|t=2020. Autoinflammatory and autoimmune conditions at the crossroad of COVID-19.|pdf=|usr=011}}
| + | |
− | | + | |
− | | + | |
− | ===Thymus===
| + | |
− | {{tp|p=32340873|t=ä. Reply: Thymopoiesis, inflamm-aging, and COVID-19 phenotype |pdf=|usr=}}
| + | |
− | {{tp|p=32317217|t=ä. Role of thymopoiesis and inflamm-aging in COVID-19 phenotype |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | ===Eosinopenia, Eosinophilia===
| + | |
− | {{tp|p=32368728|t=ä. Eosinopenia and elevated C-reactive protein facilitate triage of COVID-19 patients in fever clinic: a retrospective case-control study |pdf=|usr=}}
| + | |
− | {{tp|p=32344056|t=ä. Eosinophil Responses During COVID-19 Infections and Coronavirus Vaccination |pdf=|usr=}}
| + | |
− | {{tp|p=32369190|t=2020. COVID-19, chronic inflammatory respiratory diseases and eosinophils - Observationsfrom reported clinical case series |pdf=|usr=}}
| + | |
− | {{ttp|p=32315429|t=ä. Eosinophil count in severe coronavirus disease 2019 (COVID-19) |pdf=|usr=}}
| + | |
− | {{tp|p=32315421|t=ä. Response letter to Eosinophil count in severe coronavirus disease 2019 (COVID-19) |pdf=|usr=}}
| + | |
− | {{tp|p=32390402|t=2020. SARS-CoV-2 and Eosinophilia.|pdf=|usr=007}}
| + | |
− | {{tp|p=32544911|t=2020. Strategies to Prevent SARS-CoV-2-Mediated Eosinophilic Disease in Association with COVID-19 Vaccination and Infection.|pdf=|usr=010}}
| + | |
− | {{tp|p=32540792|t=2020. Eosinophil Response Against Classical and Emerging Respiratory Viruses: COVID-19.|pdf=|usr=010}}
| + | |
− | {{tp|p=32572245|t=2020. Roles for eosinophils and basophils in COVID-19?|pdf=|usr=010}}
| + | |
− | | + | |
− | ===Immunosenescence===
| + | |
− | {{tp|p=32597792|t=2020. Reversing immunosenescence for prevention of COVID-19.|pdf=|usr=011}}
| + | |
− | {{tp|p=32583231|t=2020. Age-related decline of de novo T cell responsiveness as a cause of COVID-19 severity.|pdf=|usr=010}}
| + | |
− | {{tp|p=32556942|t=2020. Severe COVID-19 and aging: are monocytes the key?|pdf=|usr=010}}
| + | |
− | {{tp|p=32544216|t=2020. COVID-19 and Crosstalk With the Hallmarks of Aging.|pdf=|usr=010}}
| + | |
− | {{tp|p=32489698|t=2020. COVID-19 Virulence in Aged Patients Might Be Impacted by the Host Cellular MicroRNAs Abundance/Profile.|pdf=|usr=008}}
| + | |
− | | + | |
− | | + | |
− | ===microbiome===
| + | |
− | {{tp|p=32497191|t=2020. Alterations of the Gut Microbiota in Patients with COVID-19 or H1N1 Influenza.|pdf=|usr=007}}
| + | |
− | {{ttp|p=32426999|t=2020. Gnotobiotic Rats Reveal That Gut Microbiota Regulates Colonic mRNA of Ace2, the Receptor for SARS-CoV-2 Infectivity.|pdf=|usr=007}}
| + | |
− | {{tp|p=32432790|t=2020. Editorial - COVID-19 and the microbiota: new kids on the block.|pdf=|usr=008}}
| + | |
− | {{tp|p=32442562|t=2020. Alterations in Gut Microbiota of Patients With COVID-19 During Time of Hospitalization.|pdf=|usr=008}}
| + | |
− | {{ttp|p=32579014|t=2020. Systemic inflammatory response and thrombosis due to alterations in the gut microbiota in COVID-19.|pdf=|usr=010}}
| + | |
− | {{tp|p=32552848|t=2020. Compassionate use of others' immunity - understanding gut microbiome in Covid-19.|pdf=|usr=010}}
| + | |
− | {{tp|p=32582138|t=2020. Intestinal Flora as a Potential Strategy to Fight SARS-CoV-2 Infection.|pdf=|usr=011}}
| + | |
− | {{tp|p=32582134|t=2020. Main Clinical Features of COVID-19 and Potential Prognostic and Therapeutic Value of the Microbiota in SARS-CoV-2 Infections.|pdf=|usr=011}}
| + | |
− | {{tp|p=32574708|t=2020. Mitochondria and Microbiota dysfunction in COVID-19 pathogenesis.|pdf=|usr=010}}
| + | |
− | {{tp|p=32579301|t=2020. Immunity and protection from COVID-19-Environmental mycobacteria play a role.|pdf=|usr=011}}
| + | |