Hrabina J. Lazar J. Hola M. Cip O. 2020

Aus coViki
Wechseln zu: Navigation, Suche


We current outcomes of comparison and exploration of spectral properties of molecular iodine transitions in the spectral place of 514.7 nm that are suitable for lazer regularity stabilization and metrology of length. 8 Doppler-broadened transitions which are not researched in detail before had been reviewed with the assistance of volume more than doubled Yb-doped soluble fiber laser beam, and about three of the very most promising outlines were definitely learned in greater detail with prospect of making use of them in consistency stabilization newest laser light standards. The spectral homes of hyperfine pieces (linewidths, signal-to-sounds ratio) were definitely compared to transitions that are widely recognized and customarily employed for stabilization of regularity more than doubled Nd: YAG laser at the 532 nm place with the exact same molecular iodine intake. The exterior rate doubling layout with waveguide crystal along with the Yb-doped fiber laser beam is additionally briefly defined alongside the witnessed results of lazer getting older.


If the inline PDF is not offering properly, you could acquire the PDF document here.


- [1] Mironov, A.V., Privalov, V.E., Savelev, S.K. (1997). Complete computed atlas of your assimilation variety of iodine-127 (B-X program of rings) and sophisticated of programs for your tabulation of iodine product lines. Optics and Spectroscopy, 82 (3), 332-333.



- [2] Salami, H., Ross, A.J. (2005). A molecular iodine atlas in ascii structure. Journal of Molecular Spectroscopy, 233 (1), 157-159.



- [3] Simmons, J.D., Hougen, J.T. (1977). Atlas of I2 range from 19 000 to 18 000 Cm-1. Journal of Research from the National Bureau of Standards, Section A : Physics and Chemistry, 81 (1), 25-80.



- [4] Cheng, W.Y., Chen, L.S., Yoon, T.H., Hall, J.L., Ye, J. (2002). Sub-Doppler molecular-iodine transitions nearby the dissociation minimize (523-498 nm). Optics Letters, 27 (8), 571-573.



- [5] Quinn, T.J. (2003). Practical recognition from the meaning of the metre, which include advisable radiations of other eye rate criteria (2001). Metrologia, 40 (2), 103-133.



- [6] Balhorn, R., hola vpn review Lebowsky, F., Kunzmann, H. (1972). Frequency stabilization of interior-mirror helium-neon lasers. Applied Optics, 11 (4), 742-744.



- [7] Nevsky, A.Y., Holzwarth, R., Reichert, et al. (2001). Frequency assessment and definite consistency dimension of I-2-stabilized lasers at 532 nm. Optics Communications, 192 (3-6), 263-272.



- [8] Petru, F., Popela, luminati review B., Vesela, Z. (1993). Design and performance of compact iodine stabilized He-Ne lasers at lambda=633 nm using a short visual-resonator. Measurement Science And Technology, 4 (4), 506-512.



- [9] Sevcik, R., Guttenova, J. (2007). Primary size conventional correction. In 15th Czech-Polish-Slovak Conference on Quantum and Influx Parts of Contemporary Optics, Proc. SPIE 6609.



- [10] Galzerano, G., Bava, E., Bisi, M., Bertinetto, F., Svelto, C. (1999). Frequency stabilization of occurrence-more than doubled Nd : YAG lasers at 532 nm by occurrence modulation spectroscopy method. IEEE Transactions on Instrumentation and Measurement, 48 (2), 540-543.



- [11] Nyholm, K., Merimaa, M., Ahola, T., Lassila, A. (2003). Frequency stabilization associated with a diode-pumped Nd: Yag laser light at 532 nm to iodine by employing thirdharmonic method. IEEE Transactions on Instrumentation and Measurement, 52 (2), 284-287.



- [12] Bartl, J., Guttenova, J., Jacko, V., Sevcik, R. (2007). Circuits for eye consistency stabilization of metrological lasers. In Measurement 2007 : 6th International Conference on Measurement. Bratislava : Institute of Measurement Science SAS, 131-134.



- [13] Hrabina, J., Petru, F., Jedlicka, P., Cip, O., Lazar, J. (2007). Purity of iodine cells and eye regularity transition of iodine-stabilized He-Ne lasers. Optoelectronics and Advanced Materials-Rapid Communications, 1 (5), 202-206.



- [14] Ciddor, P.E., Duffy, R.M. (1983). Two-option volume-stabilized He-Ne (633 nm) lasers : hola Studies of brief- and long-term steadiness. Journal of Physics E : Scientific Instruments, 16 (12), 1223-1227.



- [15] Rovera, G.D., Ducos, F., Zondy, J.J., Acef, O., Wallerand, J.P., Knight, J.C., Russell, P.S. (2002). Absolute volume measurement connected with an I-2 stabilized Nd : YAG visual frequency standard. Measurement Science And Technology, 13 (6), 918-922.



- [16] Lazar, J., Hrabina, J., Jedlicka, P., Cip, O. (2009). Absolute volume shifts of iodine body cells for laser stabilization. Metrologia, 46 (5), 450-456.



- [17] Hrabina, J., Lazar, J., Hola, M., Cip, O. (2013). Frequency racket attributes of lasers for interferometry in nanometrology. Sensors, 13 (2), 2206-2219.



- [18] Lance, A.L., Seal, W.D., Labaar, F. (1982). Phase racket measurement techniques. ISA Transactions, 21 (4), 37-44.



- [19] Hrabina, J., Lazar, J., Hola, M., Cip, O. (2013). Investigation of small-term amplitude and frequency variances of lasers for interferometry. Measurement Science Review, 13 (2), 63-69.



- [20] Rerucha, S., Buchta, Z., Sarbort, M., Lazar, J., Cip, O. (2012). Detection of interference part by computerized computation of quadrature impulses in homodyne lazer interferometry. Sensors, 12 (10), 14095-14112.



- [21] Smid, R., Cip, O., Lazar, J. (2008). Precise length etalon managed by stabilized consistency comb. Measurement Science Review, 8 (5), 114-117.



- [22] Hodges, J.T., Layer, H.P., Miller, W.W., Scace, G.E. (2004). Frequency-stabilized single-manner cavity ringdown equipment for top-conclusion ingestion spectroscopy. Review of Scientific Instruments, 75 (4), 849-863.



- [23] Lazar, J., Hola, M., Cip, O., Cizek, M., Hrabina, J., Buchta, Z. (2012). Refractive crawl settlement in over-motivated interferometric devices. Sensors, 12 (10), 14084-14094.



- [24] Birch, K.P., Downs, M.J. (1994). Correction for the kept up to date edlen picture for those refractive-directory of air flow. Metrologia, 31 (4), 315-316.



- [25] Lazar, J., Hola, M., Cip, O., Cizek, M., Hrabina, J., Buchta, Z. (2012). Displacement interferometry with stabilization of wavelength in atmosphere. Optics Express, 20 (25), 27830-27837.



- [26] Lazar, J., Cip, O., Cizek, M., Hrabina, J., Buchta, Z. (2011). Standing wave interferometer with stabilization of wavelength on oxygen. tm-Technisches Messen, 78 (11), 484-488.



- [27] Zhang, J., Lu, Z.H., Menegozzi, B., Wang, L.J. (2006). Putting on consistency combs from the dimension of your refractive crawl of air flow. Review of Scientific Instruments, 77 (8).



- [28] Hrabina, J., Lazar, J., Klapetek, P., Cip, O. (2011). Multidimensional interferometric device for the nearby probe microscopy nanometrology. Measurement Science & Technology, 22 (9).



- [29] Cao, H.J., Zang, E.J., Zhao, K., Zhang, X.B., Wu, Y.X., Shen, N.C. (1998). Frequency stabilization of the Nd: YAG laser beam to Doppler-broadened lines of iodine around 532 nm. In Conference on Precision Electromagnetic Measurements Digest, 6-10 July 1998. IEEE, 183-184.



- [30] Lazar, J., Hrabina, J., Sery, M., Klapetek, P., Cip, O. (2012). Multiaxis interferometric displacement measurement for neighborhood probe microscopy. Central European Journal of Physics, 10 (1), 225-231.



- [31] du Burck, F., Daussy, C., Amy-Klein, A., Goncharov, A.N., Lopez, O., Chardonnet, C., Wallerand, J.P. (2005). Frequency measurement connected with an Ar+ laser light stabilized on small collections of molecular iodine at 501.7 nm. IEEE Transactions on Instrumentation and Measurement, 54 (2), 754-758.



- [32] Wallerand, J.P., Robertsson, L., Ma, L.S., Zucco, M. (2006). Absolute frequency size of molecular iodine collections at 514.7 nm, interrogated by a frequencydoubled Yb-doped fiber laser. Metrologia, 43 (3), 294-298.



- [33] Osellame, R., Della Valle, G., Chiodo, N., Taccheo, S., Laporta, P., Svelto, O., Cerullo, G. (2008). Lasing in femtosecond laser light written eye waveguides. Applied Physics A : Materials Science And Processing, 93 (1), 17-26.



- [34] Chiodo, luminati N., Du Burck, F., Hrabina, J., Candela, Y., Wallerand, J.P., Acef, O. (2013). CW frequency doubling of 1029 nm radiation utilizing one pass volume and waveguide PPLN crystals. Optics Communications, 311, 239-244.



- [35] Chiodo, N., Du-Burck, F., Hrabina, J., Lours, M., Chea, E., Acef, O. (2014). Optical step sealing of two infrared constant wave lasers segregated by 100 THz. Optics Letters, 39 (10), 2936-2939.



- [36] Hrabina, J., Jedlicka, P., Lazar, J. (2008). Methods for way of measuring and affirmation of wholesomeness of iodine microscopic cells for lazer regularity stabilization. Measurement Science Review, 8 (5), 118-121.



- [37] Fang, H.M., Wang, S.C., Liu, L.C., Cheng, W.Y., Wu, K.Y., Shy, J.T. (2006). Measurement of hyperfine splitting of molecular iodine at 532 nm by doublepassed acousto optic modulator consistency shifter. Japanese Journal of Applied Physics, 45, 2776-2779.



- [38] Vigue, J., Broyer, M., Lehmann, J.C. (1981). Natural hyperfine and magnetic predissociation from the I2 B declare. I. - Theory. Journal de Physique, 42 (7), 937-947.



- [39] Vigue, J., Broyer, M., Lehmann, J.C. (1981). Natural hyperfine and magnetic predissociation with the I2 B state. II. - Experiments on organic and hyperfine predissociation. Journal de Physique, 42 (7), 949-959.



- [40] Vigue, J., Broyer, M., Lehmann, J.C. (1981). Natural hyperfine and magnet predissociation on the I2 B point out. III. - Experiments on magnet predissociation. When you have virtually any concerns about where by and also the best way to utilize luminati review, you possibly can contact us from our own page. Journal de Physique, 42 (7), 961-978.



- [41] Pique, J.P., Bacis, R., Hartmann, F., Sadeghi, N., Churassy, S. (1983). Hyperfine predissociation during the B declare of iodine looked into by life-time sizes of individual hyperfine sublevels. Journal de Physique, 44 (3), 347-351.

Meine Werkzeuge
Namensräume
Varianten
Aktionen
Navigation
Werkzeuge
Blogverzeichnis - Blog Verzeichnis bloggerei.deBlogverzeichnis