|
|
(15 dazwischenliegende Versionen von einem Benutzer werden nicht angezeigt) |
Zeile 1: |
Zeile 1: |
− | {{pnc}} | + | {{gohome}} |
| + | {{ft|P}} |
| + | '''CHERRYPICKING STUDIES IS NOT SCIENCE |
| + | {{qt|Reviews on covid drug development}} |
| | | |
− | current items will be put into the subsections.
| |
| | | |
− | *[[reviews on covid drug development]] | + | *'''[[scouting ideas]]''' |
− | *[[scouting ideas]]
| + | |
| | | |
− | *[[Patients on biologicals]] | + | *'''[[PHA Biologicals]]''' |
− | *[[HMGB1, RAGE]]
| + | |
− | *[[pre-Interleukin 6]]
| + | |
− | *[[post-Interleukin 6]]
| + | |
− | *[[pre-TNFalpha]]
| + | |
− | *[[post-TNFalpha]]
| + | |
− | *[[pre-Interleukin 17]]
| + | |
− | *[[post-Interleukin 17]]
| + | |
− | *[[pre-Interleukin 1]]
| + | |
− | *[[post-Interleukin 1]]
| + | |
− | *[[Inflammasome]] ''colchicine''
| + | |
− | *[[Methotrexate]]
| + | |
− | *[[other anti-inflammatory]]
| + | |
− | *[[NK-kappaB]]
| + | |
− | *[[STAT 3]]
| + | |
− | *[[JAK Janus Kinase]]
| + | |
− | *[[Corticosteroids]]
| + | |
− | *[[Cytokine absorbers]]
| + | |
− | *[[Target Complement system]]
| + | |
− | *[[Target Extracellular traps]]
| + | |
− | *[[Target Neurophils]]
| + | |
− | *[[Target Mast cells]] and kinins
| + | |
− | *[[TGF beta]]
| + | |
− | *[[Immunosuppressants]]
| + | |
− | *[[Anticoagulant in covid19]]
| + | |
− | *[[Antioxidants]]
| + | |
− | *[[HIF-EPO-Iron]]
| + | |
− | *[[Stem cells]]
| + | |
− | *[[MDSC cells]]
| + | |
− | *[[Interferons]]
| + | |
− | *[[cAMP cGMP PDE NO]]
| + | |
− | *[[TRPV* channels]]
| + | |
− | *[[Retinoids]]
| + | |
− | *[[Protease inhibitors]]
| + | |
− | *[[Tyrosine kinase inhibitors]]
| + | |
− | *[[Antineoplastic agents, traditional]]
| + | |
− | *[[Mouthrinses]]
| + | |
− | *[[Adenosinergic signaling]]
| + | |
− | *[[Purinergic signaling]]
| + | |
− | *[[Nicotinergic signaling]]
| + | |
| | | |
| + | *'''[[PHA conventional pharmacology]]''' |
| | | |
− | *[[other single compounds]] | + | *'''[[PHA retargeted compounds]]''' |
− | *[[Retargeted Psychopharm]]
| + | |
− | *[[Hydroxychloroquine]]
| + | |
− | *
| + | |
− | *[[Target ACE2, Spike protein]]
| + | |
− | *[[Target TMPRSS2, Spike protein]] ''any other covid targed herein''
| + | |
− | *[[other antiviral compounds]]
| + | |
− | *[[AV Remdesivir]]
| + | |
− | *[[AV Lopinavir]]
| + | |
− | *[[AV Ivermectin]]
| + | |
− | *[[AV Arabidol]]
| + | |
− | *[[AV Favipiravir]]
| + | |
| | | |
− | *[[Antibiotics]] | + | *'''[[PHA antivirals by mechanism]]''' |
| | | |
| + | *'''[[PHA pharmacophore by screened target]]''' |
| | | |
− | *[[Vitamin D]] | + | *'''[[PHA ImmunoNutrients]] |
− | *[[Anorganic nutrients Magnesium]]
| + | |
− | *[[Anorganic nutrients Selenium]]
| + | |
− | *[[Anorganic nutrients Zinc]]
| + | |
− | *[[Anorganic nutrients Lithium]]
| + | |
− | *[[Anorganic nutrients Copper]]
| + | |
− | *[[Anorganic nutrients Bismuth]]
| + | |
− | *[[Nutrition, general]]
| + | |
− | *[[Exercise, Vibration]]
| + | |
| | | |
| + | *'''[[PHA compl altern natural]]''' |
| | | |
− | *[[Traditional Chinese Medicine]] | + | *'''[[PHA within indications compounds]]''' |
− | *[[Natural compounds]]
| + | |
| | | |
− | *[[Statins]] | + | *'''[[PHA Serum products]]''' |
− | *[[Antidiabetic compounds, any]]
| + | |
− | *[[RSP - On RAS drugs]]
| + | |
− | *[[RSP - On NSAIDs]]
| + | |
| | | |
− | *[[Reconvalescent blood products, Passive vaccine]] | + | *'''[[PHA Vaccination]]''' |
− | *[[Plasmapheresis]]
| + | |
| + | PHA related options: |
| | | |
− | *[[Immunodeviation]] e.g. by adjuvants or other vaccinations
| |
| *[[Radiation therapy]] | | *[[Radiation therapy]] |
| *[[Phototherapy]] | | *[[Phototherapy]] |
− | *[[Active vaccine]] | + | *[[Electric fields]] |
− | | + | |
| *[[Treatment other concepts]] | | *[[Treatment other concepts]] |
− | ----
| |
| | | |
| | | |
− | {{tp|p=32628145|t=2020. Blocking angiotensin earlier with RAS blockers, statins, and heparin in high-risk COVID-19 patients: Is the remedy here?|pdf=|usr=012}}
| + | A concept of curative retargeting has been found by cellular lockdown with kinase inhibitors from the oncologic pharmacopoiea. |
− | {{tp|p=32634024|t=2020. How to Quantify and Interpret Treatment Effects in Comparative Clinical Studies of COVID-19.|pdf=|usr=012}}
| + | This means, virus replication can be stalled to zero w/o need of develpoment of new substances. There is no need for world |
− | {{tp|p=32646061|t=2020. Could Ergothioneine Aid in the Treatment of Coronavirus Patients?|pdf=|usr=012}}
| + | vaccination anymore. The virus needs permissible cells, and most perimissible is phosphotyrosine on its own compnents. |
− | {{tp|p=32638906|t=2020. Controle do Intervalo QT para Prevencao de Torsades de Pointes Durante uso de Hidroxicloroquina e/ou Azitromicina em Pacientes com COVID 19.|pdf=|usr=012}}
| + | Paper is (not yet in PubMed) : |
− | {{tp|p=32645994|t=2020. Ten-Year Research Update Review: Antiviral Activities from Marine Organisms.|pdf=|usr=012}}
| + | |
− | {{tp|p=32649880|t=2020. Need for Speed: From Human SARS-CoV-2 Samples to Protective and Efficacious Antibodies in Weeks.|pdf=|usr=012}}
| + | *'''[https://www.sciencedirect.com/science/article/pii/S1097276520305499?via%3Dihub Growth factor receptor signaling inhibition prevents SARS-CoV-2 replication at Mol Cell 2020/08/11]''' |
− | {{tp|p=32641681|t=2020. Is hydroxychloroquine beneficial for COVID-19 patients?|pdf=|usr=012}}
| + | credentials to [https://web.de/magazine/news/coronavirus/coronavirus-blockade-zellulaerer-kommunikation-forscher-stoppen-vermehrung-sars-cov-2-35045170 Marinus Brandl] who told us about it today. |
− | {{tp|p=32638908|t=2020. Double-edged sword: Granulocyte colony stimulating factors in cancer patients during the COVID-19 era.|pdf=|usr=012}}
| + | based on e.g. |
− | {{tp|p=32646869|t=2020. Challenges in evaluating SARS-CoV-2 vaccines during the COVID-19 pandemic.|pdf=|usr=012}}
| + | |
− | {{tp|p=32646499|t=2020. Effect of favipiravir and an anti-inflammatory strategy for COVID-19.|pdf=|usr=012}}
| + | {{ttp|p=32408336|t=2020. Proteomics of SARS-CoV-2-infected host cells reveals therapy targets |pdf=|usr=}} |
− | {{tp|p=32631373|t=2020. Clarifying the controversial risk-benefit profile of soluble ACE2 in COVID-19.|pdf=|usr=012}}
| + | |
− | {{tp|p=32620147|t=2020. Nafamostat mesylate treatment in combination with favipiravir for patients critically ill with Covid-19: a case series.|pdf=|usr=012}}
| + | |
− | {{tp|p=32618691|t=2020. A Centrally Acting Antihypertensive, Clonidine, Sedates Patients Presenting With Acute Respiratory Distress Syndrome Evoked by Severe Acute Respiratory Syndrome-Coronavirus 2.|pdf=|usr=012}}
| + | |
− | {{tp|p=32640414|t=2020. Vitamin D deficiency in patients with diabetes and COVID- 19 infection.|pdf=|usr=012}}
| + | |
− | {{tp|p=32634717|t=2020. Application of Artificial Intelligence in COVID-19 drug repurposing.|pdf=|usr=012}}
| + | |
− | {{tp|p=32639233|t=2020. Concentration-dependent mortality of chloroquine in overdose.|pdf=|usr=012}}
| + | |
− | {{tp|p=32619390|t=2020. Shotgun proteomics analysis of SARS-CoV-2-infected cells and how it can optimize whole viral particle antigen production for vaccines.|pdf=|usr=012}}
| + | |
− | {{tp|p=32615862|t=2020. Profiles of COVID-19 clinical trials in the Chinese Clinical Trial Registry.|pdf=|usr=012}}
| + | |
− | {{tp|p=32616599|t=2020. Potential of regulatory T cell-based therapies in the management of severe COVID-19.|pdf=|usr=012}}
| + | |
− | {{tp|p=32640331|t=2020. Analysis of the intricate effects of polyunsaturated fatty acids and polyphenols on inflammatory pathways in health and disease.|pdf=|usr=012}}
| + | |
− | {{tp|p=32621202|t=2020. Use of angiotensin-converting enzyme inhibitors and angiotensin II receptor blockers in context of COVID-19 outbreak: a retrospective analysis.|pdf=|usr=012}}
| + | |
− | {{tp|p=32638628|t=2020. Research progress on repositioning drugs and specific therapeutic drugs for SARS-CoV-2.|pdf=|usr=012}}
| + | |
− | {{tp|p=32622993|t=2020. Prophylactic (hydroxy)chloroquine in COVID-19: potential relevance for cardiac arrhythmia risk.|pdf=|usr=012}}
| + | |
− | {{tp|p=32621881|t=2020. INCIDENCE OF ARRHYTHMIAS AND ELECTROCARDIOGRAPHIC ABNORMALITIES IN SYMPTOMATIC PEDIATRIC PATIENTS WITH PCR POSITIVE SARS-CoV-2 INFECTION INCLUDING DRUG INDUCED CHANGES IN THE CORRECTED QT INTERVAL (QTc).|pdf=|usr=012}}
| + | |
− | {{tp|p=32641876|t=2020. Curcumin: a Wonder Drug as a Preventive Measure for COVID19 Management.|pdf=|usr=012}}
| + | |
− | {{tp|p=32641874|t=2020. Hydroxychloroquine and Covid-19: A Cellular and Molecular Biology Based Update.|pdf=|usr=012}}
| + | |
− | {{tp|p=32643111|t=2020. Povidone-Iodine Demonstrates Rapid In Vitro Virucidal Activity Against SARS-CoV-2, The Virus Causing COVID-19 Disease.|pdf=|usr=012}}
| + | |
− | {{tp|p=32640381|t=2020. Identification of potential inhibitors against SARS-CoV-2 by targeting proteins responsible for envelope formation and virion assembly using docking based virtual screening, and pharmacokinetics approaches.|pdf=|usr=012}}
| + | |
− | {{tp|p=32642806|t=2020. Baricitinib as rescue therapy in a patient with COVID-19 with no complete response to sarilumab.|pdf=|usr=012}}
| + | |
− | {{tp|p=32645633|t=2020. An update on antiviral antibody-based biopharmaceuticals.|pdf=|usr=012}}
| + | |
− | {{tp|p=32645632|t=2020. Baricitinib, a drug with potential effect to prevent SARS-COV-2 from entering target cells and control cytokine storm induced by COVID-19.|pdf=|usr=012}}
| + | |
− | {{tp|p=32634603|t=2020. COVID-19 Treatment: Close to a Cure? - A Rapid Review of Pharmacotherapies for the Novel Coronavirus.|pdf=|usr=012}}
| + | |
− | {{tp|p=32646770|t=2020. Clinical characteristics and predictors of survival in adults with coronavirus disease 2019 receiving tocilizumab.|pdf=|usr=012}}
| + | |
− | {{tp|p=32639711|t=2020. CNS Penetration Ability: A Critical Factor for Drugs in the Treatment of SARS-CoV-2 Brain Infection.|pdf=|usr=012}}
| + | |
− | {{tp|p=32619190|t=2020. Passive immunization: Paradoxical and traditional method for new pandemic challenge COVID-19.|pdf=|usr=012}}
| + | |
− | {{tp|p=32648245|t=2020. COVID-19 and Mesenchymal Stem Cell Treatment; Mystery or Not.|pdf=|usr=012}}
| + | |
− | {{tp|p=32628223|t=2020. Very Long-acting Antivirals as Chemovaccines for Preventing Viral Infections.|pdf=|usr=012}}
| + | |
− | {{tp|p=32640172|t=2020. Poly(ADP-ribose) Polymerase Inhibition in Acute Lung Injury: A Re-emerging Concept.|pdf=|usr=012}}
| + | |
− | {{tp|p=32634026|t=2020. COVID-19 Clinical Trials: Unravelling a Methodological Gordian Knot.|pdf=|usr=012}}
| + | |
− | {{tp|p=32628535|t=2020. Regulatory T Cells for Treating Patients With COVID-19 and Acute Respiratory Distress Syndrome: Two Case Reports.|pdf=|usr=012}}
| + | |
− | {{tp|p=32647027|t=2020. Interleukin-6 receptor blockade with subcutaneous tocilizumab in severe COVID-19 pneumonia and hyperinflammation: a case-control study.|pdf=|usr=012}}
| + | |
− | {{tp|p=32632035|t=2020. Serological tests confirm the low incidence of COVID-19 in chronic rheumatic inflammatory diseases treated with biological DMARD.|pdf=|usr=012}}
| + | |
− | {{tp|p=32632034|t=2020. COVID-19 in paediatric rheumatology patients treated with b/tsDMARDs: a cross-sectional patient survey study.|pdf=|usr=012}}
| + | |
− | {{tp|p=32632030|t=2020. Response to: 'COVID-19 in paediatric rheumatology patients treated with b/tsDMARDs: a cross-sectional patient survey study' by Cuceoglu et al.|pdf=|usr=012}}
| + | |
− | {{tp|p=32620597|t=2020. Interleukin-6 blockade with sarilumab in severe COVID-19 pneumonia with systemic hyperinflammation: an open-label cohort study.|pdf=|usr=012}}
| + | |
− | {{tp|p=32641296|t=2020. Effect of Systemic Inflammatory Response to SARS-CoV-2 on Lopinavir and Hydroxychloroquine Plasma Concentrations.|pdf=|usr=012}}
| + | |
− | {{tp|p=32631826|t=2020. Clinical trials of repurposed antivirals for SARS-CoV-2.|pdf=|usr=012}}
| + | |
− | {{tp|p=32639103|t=2020. Trainee Led Collaboratives, Clinical Trials And New Opportunities In The Covid-19 Era.|pdf=|usr=012}}
| + | |
− | {{tp|p=32644876|t=2020. Nutrients in prevention, treatment, and management of viral infections; special focus on Coronavirus.|pdf=|usr=012}}
| + | |
− | {{tp|p=32646867|t=2020. Vaccines, convalescent plasma, and monoclonal antibodies for covid-19.|pdf=|usr=012}}
| + | |
− | {{tp|p=32631851|t=2020. Urgent call for greater multilateralism and coordination of covid-19 trials.|pdf=|usr=012}}
| + | |
− | {{tp|p=32631850|t=2020. Covid-19: research methods must be flexible in a crisis.|pdf=|usr=012}}
| + | |
− | {{tp|p=32620554|t=2020. Dexamethasone in the management of covid -19.|pdf=|usr=012}}
| + | |
− | {{tp|p=32611587|t=2020. Covid-19: Lopinavir-ritonavir does not benefit hospitalised patients, UK trial finds.|pdf=|usr=012}}
| + | |
− | {{tp|p=32641344|t=2020. COVID-19 clinical trials: see it big and keep it simple.|pdf=|usr=012}}
| + | |
− | {{tp|p=32639062|t=2020. Serious adverse events with tocilizumab: pharmacovigilance as an aid to prioritize monitoring in COVID-19.|pdf=|usr=012}}
| + | |
− | {{tp|p=32627226|t=2020. Potential role of IL-17 blocking agents in the treatment of severe COVID-19?|pdf=|usr=012}}
| + | |
− | {{tp|p=32645204|t=2020. Double-bright (CD56bright/CD16bright) NK cell adoptive immunotherapy for SARS-CoV-2.|pdf=|usr=012}}
| + | |
− | {{tp|p=32621754|t=2020. COVID-19 pandemic and management of GIMEMA clinical trials: changes and challenges.|pdf=|usr=012}}
| + | |
− | {{tp|p=32639031|t=2020. Proteinase-activated receptor 1 (PAR1): A target for repurposing in the treatment of COVID-19?|pdf=|usr=012}}
| + | |
− | {{tp|p=32640179|t=2020. Current Therapies Under Investigation for COVID-19.|pdf=|usr=012}}
| + | |
− | {{tp|p=32633733|t=2020. Interaction of hydroxychloroquine with SARS-CoV2 functional proteins using all-atoms non-equilibrium alchemical simulations.|pdf=|usr=012}}
| + | |
− | {{tp|p=32613971|t=2020. Construction and immunogenic studies of a mFc fusion receptor binding domain (RBD) of spike protein as a subunit vaccine against SARS-CoV-2 infection.|pdf=|usr=012}}
| + | |
− | {{tp|p=32621392|t=2020. Low serum 25-hydroxyvitamin D (25[OH]D) levels in patients hospitalised with COVID-19 are associated with greater disease severity.|pdf=|usr=012}}
| + | |
− | {{tp|p=32640049|t=2020. Immune checkpoint inhibition in the era of COVID-19.|pdf=|usr=012}}
| + | |
− | {{tp|p=32640019|t=2020. Proposing minimum requirements for announcing clinical trial results during the COVID-19 pandemic.|pdf=|usr=012}}
| + | |
− | {{tp|p=32628748|t=2020. Evaluating use cases for human challenge trials in accelerating SARS-CoV-2 vaccine development.|pdf=|usr=012}}
| + | |
− | {{tp|p=32648959|t=2020. Convalescent plasma or hyperimmune immunoglobulin for people with COVID-19: a living systematic review.|pdf=|usr=012}}
| + | |
− | {{tp|p=32634894|t=2020. Smoking in critically ill patients with COVID-19: the Australian experience.|pdf=|usr=012}}
| + | |
− | {{tp|p=32628049|t=2020. Analytical Methods on Determination in Pharmaceuticals and Biological Materials of Chloroquine as Available for the Treatment of COVID-19.|pdf=|usr=012}}
| + | |
− | {{tp|p=32619167|t=2020. Effect of the Phytochemical Agents Against the SARS-CoV and Selected Some of them for Application to COVID-19: A Mini-Review.|pdf=|usr=012}}
| + | |
− | {{tp|p=32634080|t=2020. Repurposing Drugs for the Management of Patients with Confirmed Coronavirus Disease 2019 (COVID-19).|pdf=|usr=012}}
| + | |
− | {{tp|p=32634079|t=2020. The role of Chloroquine and Hydroxychloroquine in Immune Regulation and Diseases.|pdf=|usr=012}}
| + | |
− | {{tp|p=32628591|t=2020. Elucidating the Pivotal Role of Immune Players in the Management of COVID-19: Focus on Mesenchymal Stem Cells and Inflammation.|pdf=|usr=012}}
| + | |
− | {{tp|p=32648845|t=2020. Therapeutic targets and computational approaches on drug development for COVID-19.|pdf=|usr=012}}
| + | |
− | {{tp|p=32621718|t=2020. Shape-based Machine Learning Models for the potential Novel COVID-19 protease inhibitors assisted by Molecular Dynamics Simulation.|pdf=|usr=012}}
| + | |
− | {{tp|p=32643448|t=2020. Network pharmacology and molecular docking analysis on molecular targets and mechanisms of Huashi Baidu formula in the treatment of COVID-19.|pdf=|usr=012}}
| + | |
− | {{tp|p=32632960|t=2020. Revisiting potential druggable targets against SARS-CoV-2 and repurposing therapeutics under preclinical study and clinical trials: A comprehensive review.|pdf=|usr=012}}
| + | |
− | {{tp|p=32629169|t=2020. Repositioning chloroquine as antiviral prophylaxis against COVID-19: potential and challenges.|pdf=|usr=012}}
| + | |
− | {{tp|p=32616659|t=2020. BET 2: Hydroxychloroquine in the treatment of COVID-19.|pdf=|usr=012}}
| + | |
− | {{tp|p=32616658|t=2020. BET 1: Lopinavir-ritonavir and COVID-19.|pdf=|usr=012}}
| + | |
− | {{tp|p=32641191|t=2020. Bacillus Calmette-Guerin vaccination and clinical characteristics and outcomes of COVID-19 in Rhode Island, United States: a cohort study.|pdf=|usr=012}}
| + | |
− | {{tp|p=32648935|t=2020. SGLT2 inhibition and COVID-19: The road not taken.|pdf=|usr=012}}
| + | |
− | {{tp|p=32620680|t=2020. Do psychotropic drugs used during COVID-19 therapy have an effect on the treatment process?|pdf=|usr=012}}
| + | |
− | {{tp|p=32631083|t=2020. Repurposing of well-known medications as antivirals: hydroxychloroquine and chloroquine - from HIV-1 infection to COVID-19.|pdf=|usr=012}}
| + | |
− | {{tp|p=32643980|t=2020. Predictor of poor prognosis of COVID-19 patients----liver injury.|pdf=|usr=012}}
| + | |
− | {{tp|p=32649840|t=2020. Liver injury in severe COVID-19 infection: current insights and challenges.|pdf=|usr=012}}
| + | |
− | {{tp|p=32639083|t=2020. Balancing infection control and frailty prevention during and after the COVID-19 pandemic: Introduction of the NCGG Home Exercise Program for Older People 2020.|pdf=|usr=012}}
| + | |
− | {{tp|p=32645727|t=2020. Isopathic Remedy Prepared from Convalescent Plasma as a Therapeutic Option for COVID-19?|pdf=|usr=012}}
| + | |
− | {{tp|p=32643512|t=2020. Thinking more about therapy with convalescent plasma for COVID-19 patients.|pdf=|usr=012}}
| + | |
− | {{tp|p=32633162|t=2020. Successful Treatment of Covid-19 Associated Cytokine Release Syndrome with Colchicine. A Case Report and Review of Literature.|pdf=|usr=012}}
| + | |
− | {{tp|p=32643997|t=2020. Effect of recombinant human granulocyte colony-stimulating factor on lymphocyte subsets in patients with COVID-19.|pdf=|usr=012}}
| + | |
− | {{tp|p=32615877|t=2020. Suggestions for Combatting COVID-19 by Natural Means in the Absence of Standard Medical Regimens.|pdf=|usr=012}}
| + | |
− | {{tp|p=32649272|t=2020. Combating COVID-19 and Building Immune Resilience: A Potential Role for Magnesium Nutrition?|pdf=|usr=012}}
| + | |
− | {{tp|p=32643552|t=2020. Identification of bioactive molecule from Withania somnifera (Ashwagandha) as SARS-CoV-2 main protease inhibitor.|pdf=|usr=012}} | + | |
− | {{tp|p=32643550|t=2020. Potential of NO donor furoxan as SARS-CoV-2 main protease (M(pro)) inhibitors: in silico analysis.|pdf=|usr=012}}
| + | |
− | {{tp|p=32643529|t=2020. Natural-like products as potential SARS-CoV-2 M(pro) inhibitors: in-silico drug discovery.|pdf=|usr=012}}
| + | |
− | {{tp|p=32627715|t=2020. Screening of phytochemical compounds of Tinospora cordifolia for their inhibitory activity on SARS-CoV-2: an in silico study.|pdf=|usr=012}}
| + | |
− | {{tp|p=32627689|t=2020. Possibility of HIV-1 protease inhibitors-clinical trial drugs as repurposed drugs for SARS-CoV-2 main protease: a molecular docking, molecular dynamics and binding free energy simulation study.|pdf=|usr=012}}
| + | |
− | {{tp|p=32619162|t=2020. Bacterial protein azurin and derived peptides as potential anti-SARS-CoV-2 agents: insights from molecular docking and molecular dynamics simulations.|pdf=|usr=012}}
| + | |
− | {{tp|p=32619134|t=2020. Epitope based peptide vaccine against SARS-COV2: an immune-informatics approach.|pdf=|usr=012}}
| + | |
− | {{tp|p=32618198|t=2020. Incretin-Based Therapies Role in COVID-19 Era: Evolving Insights.|pdf=|usr=012}}
| + | |
− | {{tp|p=32643158|t=2020. Excavating SARS-coronavirus 2 genome for epitope-based subunit vaccine synthesis using immunoinformatics approach.|pdf=|usr=012}}
| + | |
− | {{tp|p=32643200|t=2020. Convalescent plasma therapy in patients with COVID-19.|pdf=|usr=012}}
| + | |
− | {{tp|p=32647045|t=2020. Hydroxychloroquine and COVID-19: critiquing the impact of disease public profile on policy and clinical decision-making.|pdf=|usr=012}}
| + | |
− | {{tp|p=32644254|t=2020. Early use of tocilizumab in the prevention of adult respiratory failure in SARS-CoV-2 infections and the utilization of interleukin-6 levels in the management.|pdf=|usr=012}}
| + | |
− | {{tp|p=32644224|t=2020. Chronic treatment with hydroxychloroquine and SARS-CoV-2 infection.|pdf=|usr=012}}
| + | |
− | {{tp|p=32644208|t=2020. Erythropoietin Induced Hemoglobin Sub-Unit Beta may Stimulate Innate Immune RNA Virus Pattern Recognition, Suppress Reactive Oxygen Species, Reduce ACE2 Viral Doorway Opening and Neutrophil Extracellular Traps against Covid-19.|pdf=|usr=012}}
| + | |
− | {{tp|p=32633865|t=2020. A retrospective review of memantine use and COVID-19-associated mortality from a national database.|pdf=|usr=012}}
| + | |
− | {{tp|p=32633831|t=2020. RNA-dependent RNA Polymerase of SARS-CoV-2 as a Therapeutic Target.|pdf=|usr=012}}
| + | |
− | {{tp|p=32621621|t=2020. Lopinavir/ritonavir is associated with pneumonia resolution in COVID-19 patients with influenza coinfection: a retrospective matched-pair cohort study.|pdf=|usr=012}}
| + | |
− | {{tp|p=32617989|t=2020. Efficacy and safety of umifenovir for coronavirus disease 2019 (COVID-19): A systematic review and meta-analysis.|pdf=|usr=012}}
| + | |
| | | |
− | {{tp|p=32634602|t=2020. Corticosteroid therapy for patients with CoVID-19 pneumonia: a before-after study.|pdf=|usr=012}}
| + | ======================================================================================= |
− | {{tp|p=32629115|t=2020. A pharmacological perspective of Chloroquine in SARS-CoV-2 infection.|pdf=|usr=012}}
| + | |
− | {{tp|p=32619764|t=2020. Case reports study of the first five patients COVID-19 treated with remdesivir in France.|pdf=|usr=012}}
| + | |
− | {{tp|p=32634589|t=2020. Potential effective treatment for COVID-19: systematic review and meta-analysis of the severe infectious disease with convalescent plasma therapy.|pdf=|usr=012}}
| + | |
− | {{tp|p=32623082|t=2020. Treatment with Hydroxychloroquine, Azithromycin, and Combination in Patients Hospitalized with COVID-19.|pdf=|usr=012}}
| + | |
− | {{tp|p=32623080|t=2020. An Observational Cohort Study of Hydroxychloroquine and Azithromycin for COVID-19: (Can't Get No) Satisfaction.|pdf=|usr=012}}
| + | |
− | {{tp|p=32629817|t=2020. Influence of Herbal Medicines on HMGB1 Release, SARS-CoV-2 Viral Attachment, Acute Respiratory Failure, and Sepsis. A Literature Review.|pdf=|usr=012}}
| + | |
− | {{tp|p=32617855|t=2020. Phylogenetic Analysis and Structural Perspectives of RNA-Dependent RNA-Polymerase Inhibition from SARs-CoV-2 with Natural Products.|pdf=|usr=012}}
| + | |
− | {{tp|p=32627127|t=2020. Clinical guidance for navigating the QTc-prolonging and arrhythmogenic potential of pharmacotherapy during the COVID-19 pandemic.|pdf=|usr=012}}
| + | |
− | {{tp|p=32623068|t=2020. Nucleic Acid Approaches to Antibody-based Therapeutics for COVID-19: A Perspective.|pdf=|usr=012}}
| + | |
− | {{tp|p=32634126|t=2020. SARS-CoV-2 viral load and antibody responses: the case for convalescent plasma therapy.|pdf=|usr=012}}
| + | |
− | {{tp|p=32629768|t=2020. Role of Lopinavir/Ritonavir in the Treatment of Covid-19: A Review of Current Evidence, Guideline Recommendations, and Perspectives.|pdf=|usr=012}}
| + | |
− | {{tp|p=32630746|t=2020. SARS-CoV-2: Repurposed Drugs and Novel Therapeutic Approaches-Insights into Chemical Structure-Biological Activity and Toxicological Screening.|pdf=|usr=012}}
| + | |
− | {{tp|p=32622963|t=2020. Mesenchymal stromal cells and their secreted extracellular vesicles as therapeutic tools for COVID-19 pneumonia? ().|pdf=|usr=012}}
| + | |
− | {{tp|p=32622008|t=2020. Azithromycin and SARS-CoV-2 infection: where we are now and where we are going.|pdf=|usr=012}}
| + | |
− | {{tp|p=32636240|t=2020. BCG vaccine and COVID-19: implications for infection prophylaxis and cancer immunotherapy.|pdf=|usr=012}}
| + | |
− | {{tp|p=32611687|t=2020. On the use of immune checkpoint inhibitors in patients with viral infections including COVID-19.|pdf=|usr=012}}
| + | |
− | {{tp|p=32627442|t=2020. Convalescent Plasma Therapy in Coronavirus Disease 2019: a Case Report and Suggestions to Overcome Obstacles.|pdf=|usr=012}}
| + | |
− | {{tp|p=32638109|t=2020. Mild COVID-19 infection in an NMO patient treated with tocilizumab: a confirmation of anti-IL-6 protective role?|pdf=|usr=012}}
| + | |
− | {{tp|p=32646487|t=2020. Evolving geographic diversity in SARS-CoV2 and in silico analysis of replicating enzyme 3CL(pro) targeting repurposed drug candidates.|pdf=|usr=012}}
| + | |
− | {{tp|p=32635935|t=2020. Analysis of SARS-CoV-2 RNA-dependent RNA polymerase as a potential therapeutic drug target using a computational approach.|pdf=|usr=012}}
| + | |
− | {{tp|p=32631442|t=2020. Systematic review of the registered clinical trials for coronavirus disease 2019 (COVID-19).|pdf=|usr=012}}
| + | |
− | {{tp|p=32650019|t=2020. Interleukin 6 levels after tocilizumab administration in transplant recipients with COVID-19.|pdf=|usr=012}}
| + | |
− | {{tp|p=32629788|t=2020. Calcineurin Inhibitor-Based Immunosuppression and COVID-19: Results from a Multidisciplinary Cohort of Patients in Northern Italy.|pdf=|usr=012}}
| + | |
− | {{tp|p=32610445|t=2020. Microbial Natural Products as Potential Inhibitors of SARS-CoV-2 Main Protease (M(pro)).|pdf=|usr=012}}
| + | |
− | {{tp|p=32634550|t=2020. Aptamers, the bivalent agents as probes and therapies for coronavirus infections: A systematic review.|pdf=|usr=012}}
| + | |
− | {{tp|p=32641037|t=2020. Caspase1/11 signaling affects muscle regeneration and recovery following ischemia, and can be modulated by chloroquine.|pdf=|usr=012}}
| + | |
− | {{tp|p=32647131|t=2020. Self-amplifying RNA SARS-CoV-2 lipid nanoparticle vaccine candidate induces high neutralizing antibody titers in mice.|pdf=|usr=012}}
| + | |
− | {{tp|p=32648153|t=2020. The risk of QTc-interval prolongation in COVID-19 patients treated with chloroquine.|pdf=|usr=012}}
| + | |
− | {{tp|p=32641560|t=2020. COVID-19 and vitamin D deficiency, a fatal combination?|pdf=|usr=012}}
| + | |
− | {{tp|p=32645974|t=2020. SARS-CoV-2, ACE2, and Hydroxychloroquine: Cardiovascular Complications, Therapeutics, and Clinical Readouts in the Current Settings.|pdf=|usr=012}}
| + | |
− | {{tp|p=32619723|t=2020. Edaravone: A potential treatment for the COVID-19-induced inflammatory syndrome?|pdf=|usr=012}}
| + | |
− | {{tp|p=32622723|t=2020. Chinese herbal medicine for coronavirus disease 2019: A systematic review and meta-analysis.|pdf=|usr=012}}
| + | |
− | {{tp|p=32629137|t=2020. Ultraviolet-based Biophotonic Technologies and COVID-19.|pdf=|usr=012}}
| + | |
− | {{tp|p=32641511|t=2020. Discovery of potent thrombin inhibitors from a protease-focused DNA-encoded chemical library.|pdf=|usr=012}}
| + | |
− | {{tp|p=32621829|t=2020. Letter to the editor regarding "Lack of supporting data make the risks of a clinical trial of radiation therapy as a treatment for COVID-19 pneumonia unacceptable".|pdf=|usr=012}}
| + | |
− | {{tp|p=32638884|t=2020. Primum non nocere - Are chloroquine and hydroxychloroquine safe prophylactic/treatment options for SARS-CoV-2 (covid-19)?|pdf=|usr=012}}
| + | |
− | {{tp|p=32616763|t=2020. A candidate multi-epitope vaccine against SARS-CoV-2.|pdf=|usr=012}}
| + | |
− | {{tp|p=32638647|t=2020. Alternative management of Covid-19 infection.|pdf=|usr=012}}
| + | |
− | {{tp|p=32636116|t=2020. First case of convalescent plasma transfusion in a child with COVID-19-associated severe aplastic anemia.|pdf=|usr=012}}
| + | |
− | {{tp|p=32645478|t=2020. Hydroxychloroquine safety: A meta-analysis of randomized controlled trials.|pdf=|usr=012}}
| + | |
− | {{tp|p=32629139|t=2020. No evidence of clinical benefits of early treatment of COVID-19 patients with hydroxychloroquine and azithromycin: Comment on "Early treatment of COVID-19 patients with hydroxychloroquine and azithromycin: A retrospective analysis of 1061 cases in Marseille, France".|pdf=|usr=012}}
| + | |
− | {{tp|p=32635353|t=2020. Treatment of Severe COVID-19 with Tocilizumab Mitigates Cytokine Storm and Averts Mechanical Ventilation During Acute Respiratory Distress: A Case Report and Literature Review.|pdf=|usr=012}}
| + | |
− | {{tp|p=32640619|t=2020. Prospects and Challenges in the Development of Universal Influenza Vaccines.|pdf=|usr=012}}
| + | |
− | {{tp|p=32635180|t=2020. Immunoinformatic Analysis of T- and B-Cell Epitopes for SARS-CoV-2 Vaccine Design.|pdf=|usr=012}}
| + | |
− | {{tp|p=32621841|t=2020. Epitope-based peptide vaccines predicted against novel coronavirus disease caused by SARS-CoV-2.|pdf=|usr=012}}
| + | |
− | {{tp|p=32629804|t=2020. Repurposing Therapeutics for Potential Treatment of SARS-CoV-2: A Review.|pdf=|usr=012}}
| + | |
− | {{tp|p=32620700|t=2020. Low Dose Radiation to COVID-19 Patients to Ease the Disease Course and Reduce the Need of Intensive Care.|pdf=|usr=012}}
| + | |
− | {{tp|p=32623965|t=2020. Are we aware of potential interactions between drugs used in lung cancer and drugs used in the treatment of COVID-19?|pdf=|usr=012}}
| + | |
− | {{tp|p=32628262|t=2020. The Development of COVID-19 Vaccines: Safeguards Needed.|pdf=|usr=012}}
| + | |
− | {{tp|p=32628244|t=2020. Developing a SARS-CoV-2 Vaccine at Warp Speed.|pdf=|usr=012}}
| + | |
− | {{tp|p=32614442|t=2020. Evolution of Altered Sense of Smell or Taste in Patients With Mildly Symptomatic COVID-19.|pdf=|usr=012}}
| + | |
− | {{tp|p=32613691|t=2020. Editorial - Nutritional Status Affects COVID-19 Patient Outcomes.|pdf=|usr=012}}
| + | |
− | {{tp|p=32613660|t=2020. Evaluation of Nutritional Risk and its Association With Mortality Risk in Severe and Critically Ill COVID-19 Patients.|pdf=|usr=012}}
| + | |
− | {{tp|p=32619276|t=2020. Low dose radiation as a treatment for COVID-19 pneumonia: a threat or real opportunity?|pdf=|usr=012}}
| + | |
− | {{tp|p=32619669|t=2020. Virtual screening based on molecular docking of possible inhibitors of Covid-19 main protease.|pdf=|usr=012}}
| + | |
− | {{tp|p=32633860|t=2020. Safety of Plasma Infusions in Parkinson's Disease.|pdf=|usr=012}}
| + | |
− | {{tp|p=32649078|t=2020. Remdesivir for the Treatment of Covid-19 - Preliminary Report. Reply.|pdf=|usr=012}}
| + | |
− | {{tp|p=32649077|t=2020. Remdesivir for the Treatment of Covid-19 - Preliminary Report.|pdf=|usr=012}}
| + | |
− | {{tp|p=32649076|t=2020. Remdesivir for the Treatment of Covid-19 - Preliminary Report.|pdf=|usr=012}}
| + | |
− | {{tp|p=32649075|t=2020. Remdesivir for the Treatment of Covid-19 - Preliminary Report.|pdf=|usr=012}}
| + | |
− | {{tp|p=32649074|t=2020. Remdesivir for the Treatment of Covid-19 - Preliminary Report.|pdf=|usr=012}}
| + | |
− | {{tp|p=32643410|t=2020. Bioactive compounds from marine resources against novel corona virus (2019-nCoV): in silico study for corona viral drug.|pdf=|usr=012}}
| + | |
− | {{tp|p=32636505|t=2020. COVID-19 platform trial delivers.|pdf=|usr=012}}
| + | |
− | {{tp|p=32623442|t=2020. Going back in time for an antibody to fight COVID-19.|pdf=|usr=012}}
| + | |
− | {{tp|p=32645305|t=2020. Golden Anniversary of the Nicotinic Receptor.|pdf=|usr=012}}
| + | |
− | {{tp|p=32618794|t=2020. Tocilizumab and Remdesivir in a Pregnant Patient With Coronavirus Disease 2019 (COVID-19).|pdf=|usr=012}}
| + | |
− | {{tp|p=32615642|t=2020. Is povidone-iodine mouthwash effective against SARS-CoV-2? First in vivo tests.|pdf=|usr=012}}
| + | |
− | {{tp|p=32613637|t=2020. Naringenin, a flavanone with antiviral and anti-inflammatory effects: A promising treatment strategy against COVID-19.|pdf=|usr=012}}
| + | |
− | {{tp|p=32648294|t=2020. COVID-19: Phylogenetic approaches may help in finding resources for natural cure.|pdf=|usr=012}}
| + | |
− | {{tp|p=32647056|t=2020. BCG vaccine protection from severe coronavirus disease 2019 (COVID-19).|pdf=|usr=012}}
| + | |
− | {{tp|p=32648313|t=2020. Immunopathology and immunotherapeutic strategies in severe acute respiratory syndrome coronavirus 2 infection.|pdf=|usr=012}}
| + | |
− | {{tp|p=32614102|t=2020. Using heat to kill SARS-CoV-2.|pdf=|usr=012}}
| + | |
− | {{tp|p=32646977|t=2020. Can interferons stop COVID-19 before it takes hold?|pdf=|usr=012}}
| + | |
− | {{tp|p=32649367|t=2020. Potential Immunotherapeutic Targets For Hypoxia Due to COVI-FLU.|pdf=|usr=012}}
| + | |
− | {{tp|p=32619318|t=2020. COVID-19 drug repurposing: Summary statistics on current clinical trials and promising untested candidates.|pdf=|usr=012}}
| + | |
− | {{tp|p=32627216|t=2020. Characteristics and serological patterns of COVID-19 convalescent plasma donors: optimal donors and timing of donation.|pdf=|usr=012}}
| + | |
− | {{tp|p=32639598|t=2020. SARS-CoV2 and immunosuppression: a double-edged sword.|pdf=|usr=012}}
| + | |
− | {{tp|p=32629531|t=2020. Severe COVID-19 in a patient with chronic graft-versus-host disease after hematopoietic stem cell transplant successfully treated with ruxolitinib.|pdf=|usr=012}}
| + | |
− | {{tp|p=32614684|t=2020. Review of the SARS-CoV-2 in Wuhan and Analysis as Well as Prediction of Therapeutic Drugs.|pdf=|usr=012}}
| + | |
| | | |
− | {{tp|p=32388537|t=2020. Designing of improved drugs for COVID-19: Crystal structure of SARS-CoV-2 main protease M(pro).|pdf=|usr=009}}
| + | COVID19 is now a CURABLE disease !!! |
− | {{tp|p=32532959|t=2020. The role of furin cleavage site in SARS-CoV-2 spike protein-mediated membrane fusion in the presence or absence of trypsin.|pdf=|usr=009}}
| + | |
− | {{tp|p=32423553|t=2020. Angiotensin converting enzyme: A review on expression profile and its association with human disorders with special focus on SARS-CoV-2 infection.|pdf=|usr=009}}
| + | |
− | {{tp|p=32531235|t=2020. Role of the GTNGTKR motif in the N-terminal receptor-binding domain of the SARS-CoV-2 spike protein.|pdf=|usr=009}}
| + | |
− | {{tp|p=32430279|t=2020. Gut microbiota and Covid-19- possible link and implications.|pdf=|usr=009}}
| + | |
− | {{tp|p=32416259|t=2020. On the interactions of the receptor-binding domain of SARS-CoV-1 and SARS-CoV-2 spike proteins with monoclonal antibodies and the receptor ACE2.|pdf=|usr=009}}
| + | |
− | {{tp|p=32558150|t=2020. Individual variation of the SARS-CoV-2 receptor ACE2 gene expression and regulation.|pdf=|usr=010}}
| + | |
− | {{tp|p=32585135|t=2020. Neutralization of SARS-CoV-2 by Destruction of the Prefusion Spike.|pdf=|usr=010}}
| + | |
− | {{tp|p=32546195|t=2020. Micronutrient status of COVID-19 patients: a critical consideration.|pdf=|usr=010}}
| + | |
− | {{tp|p=32559343|t=2020. Rationale for targeting Complement in COVID-19.|pdf=|usr=010}}
| + | |
− | {{tp|p=32543705|t=2020. Evolutionary relationships and sequence-structure determinants in human SARS coronavirus-2 spike proteins for host receptor recognition.|pdf=|usr=010}}
| + | |
− | {{tp|p=32592394|t=2020. A role for selenium-dependent GPX1 in SARS-CoV-2 virulence.|pdf=|usr=010}}
| + | |
− | {{tp|p=32590326|t=2020. Pulmonary surfactant itself must be a strong defender against SARS-CoV-2.|pdf=|usr=010}}
| + | |
− | {{tp|p=32562814|t=2020. Statins and other drugs: Facing COVID-19 as a vascular disease.|pdf=|usr=010}}
| + | |
− | {{tp|p=32424591|t=2020. COVID-19, acute respiratory distress syndrome (ARDS), and hyperbaric oxygen therapy (HBOT): what is the link?|pdf=|usr=011}}
| + | |
− | {{tp|p=32598884|t=2020. Alterations in Fecal Fungal Microbiome of Patients With COVID-19 During Time of Hospitalization until Discharge.|pdf=|usr=011}}
| + | |
− | {{tp|p=32481719|t=2020. The Role of MicroRNA in the Airway Surface Liquid Homeostasis.|pdf=|usr=011}}
| + | |
− | {{tp|p=32534506|t=2020. Bradykinin as a Probable Aspect in SARS-Cov-2 Scenarios: Is Bradykinin Sneaking out of Our Sight?|pdf=|usr=011}}
| + | |
− | {{tp|p=32600316|t=2020. The cholinergic anti-inflammatory pathway alleviates acute lung injury.|pdf=|usr=011}}
| + | |
− | {{tp|p=32537478|t=2020. Airways Expression of SARS-CoV-2 Receptor, ACE2, and TMPRSS2 Is Lower in Children Than Adults and Increases with Smoking and COPD.|pdf=|usr=011}}
| + | |
− | {{tp|p=32595361|t=2020. Gut-lung axis and dysbiosis in COVID-19.|pdf=|usr=011}}
| + | |
− | {{tp|p=32591496|t=2020. Door to the cell for COVID-19 opened, leading way to therapies.|pdf=|usr=011}}
| + | |
− | {{tp|p=32602262|t=2020. Use of Anakinra to Prevent Mechanical Ventilation in Severe COVID-19: A Case Series.|pdf=|usr=011}}
| + | |
− | {{tp|p=32555145|t=2020. Targeting the entry step of SARS-CoV-2: a promising therapeutic approach.|pdf=|usr=011}}
| + | |
− | {{tp|p=32594085|t=2020. Early Hemoperfusion for Cytokine Removal May Contribute to Prevention of Intubation in Patients Infected with COVID-19.|pdf=|usr=011}}
| + | |
− | {{tp|p=32582574|t=2020. ACE2, Much More Than Just a Receptor for SARS-COV-2.|pdf=|usr=011}}
| + | |
− | {{tp|p=32545271|t=2020. Relative Abundance of SARS-CoV-2 Entry Genes in the Enterocytes of the Lower Gastrointestinal Tract.|pdf=|usr=011}}
| + | |
− | {{ttp|p=32593832|t=2020. Why is SARS-CoV-2 infection more severe in obese men? The gut lymphatics - Lung axis hypothesis.|pdf=|usr=011}}
| + | |
− | {{tp|p=32573788|t=2020. Elucidation of Cellular Targets and Exploitation of the Receptor Binding Domain of SARS-CoV-2 for vaccine and monoclonal antibody synthesis.|pdf=|usr=011}}
| + | |
− | {{tp|p=32551652|t=2020. Critical Differences Between the Binding Features of the Spike Proteins of SARS-CoV-2 and SARS-CoV.|pdf=|usr=011}}
| + | |
− | {{tp|p=32551648|t=2020. The Discovery of a Putative Allosteric Site in the SARS-CoV-2 Spike Protein Using an Integrated Structural/Dynamic Approach.|pdf=|usr=011}}
| + | |
− | {{tp|p=32571797|t=2020. Identification of common deletions in the spike protein of SARS-CoV-2.|pdf=|usr=011}}
| + | |
− | {{tp|p=32606248|t=2020. Genomic discovery of an evolutionarily programmed modality for small-molecule targeting of an intractable protein surface.|pdf=|usr=011}}
| + | |
− | {{tp|p=32602627|t=2020. Angiotensin-converting enzyme 2: The old door for new severe acute respiratory syndrome coronavirus 2 infection.|pdf=|usr=011}}
| + | |
| | | |
− | {{tp|p=32417594|t=2020. Supplements for COVID-19: A modifiable environmental risk.|pdf=|usr=011}}
| + | ======================================================================================= |