|
|
(18 dazwischenliegende Versionen von einem Benutzer werden nicht angezeigt) |
Zeile 1: |
Zeile 1: |
− | {{pnc}} | + | {{gohome}} |
| + | {{ft|P}} |
| + | '''CHERRYPICKING STUDIES IS NOT SCIENCE |
| + | {{qt|Reviews on covid drug development}} |
| | | |
− | current items will be put into the subsections.
| |
| | | |
− | *[[reviews on covid drug development]] | + | *'''[[scouting ideas]]''' |
− | *[[scouting ideas]]
| + | |
| | | |
− | *[[Patients on biologicals]] | + | *'''[[PHA Biologicals]]''' |
− | *[[HMGB1, RAGE]]
| + | |
− | *[[pre-Interleukin 6]]
| + | |
− | *[[post-Interleukin 6]]
| + | |
− | *[[pre-TNFalpha]]
| + | |
− | *[[post-TNFalpha]]
| + | |
− | *[[pre-Interleukin 17]]
| + | |
− | *[[post-Interleukin 17]]
| + | |
− | *[[pre-Interleukin 1]]
| + | |
− | *[[post-Interleukin 1]]
| + | |
− | *[[Inflammasome]] ''colchicine''
| + | |
− | *[[Methotrexate]]
| + | |
− | *[[other anti-inflammatory]]
| + | |
− | *[[NK-kappaB]]
| + | |
− | *[[STAT 3]]
| + | |
− | *[[JAK Janus Kinase]]
| + | |
− | *[[Corticosteroids]]
| + | |
− | *[[Cytokine absorbers]]
| + | |
− | *[[Target Complement system]]
| + | |
− | *[[Target Extracellular traps]]
| + | |
− | *[[Target Neurophils]]
| + | |
− | *[[Target Mast cells]] and kinins
| + | |
− | *[[TGF beta]]
| + | |
− | *[[Immunosuppressants]]
| + | |
− | *[[Interferons]]
| + | |
− | *[[Anticoagulant in covid19]]
| + | |
| | | |
| + | *'''[[PHA conventional pharmacology]]''' |
| | | |
− | *[[Stem cells]] | + | *'''[[PHA retargeted compounds]]''' |
− | *[[MDSC cells]]
| + | |
| | | |
− | *[[Antibiotics]] | + | *'''[[PHA antivirals by mechanism]]''' |
− | *[[cAMP cGMP PDE NO]]
| + | |
− | *[[TRPV* channels]]
| + | |
− | *[[Retinoids]]
| + | |
− | *[[Tyrosine kinase inhibitors]]
| + | |
− | *[[Antineoplastic agents, traditional]]
| + | |
− | *[[Mouthrinses]]
| + | |
− | *[[Purinergic signaling]]
| + | |
− | *[[Nicotinergic signaling]]
| + | |
| | | |
− | *[[Statins]] | + | *'''[[PHA pharmacophore by screened target]]''' |
− | *[[Antidiabetic compounds, any]]
| + | |
− | *[[RSP - On RAS drugs]]
| + | |
| | | |
| + | *'''[[PHA ImmunoNutrients]] |
| | | |
− | *[[other single compounds]] | + | *'''[[PHA compl altern natural]]''' |
− | *[[Retargeted single compounds]]
| + | |
− | *[[Hydroxychloroquine]]
| + | |
− | *
| + | |
− | *[[Target ACE2, Spike protein]]
| + | |
− | *[[Target TMPRSS2, Spike protein]] ''any other covid targed herein''
| + | |
− | *[[other antiviral compounds]]
| + | |
− | *[[AV Remdesivir]]
| + | |
− | *[[AV Lopinavir]]
| + | |
− | *[[AV Ivermectin]]
| + | |
− | *[[AV Arabidol]]
| + | |
− | *[[AV Favipiravir]]
| + | |
| | | |
− | *[[HIF-EPO-Iron]] | + | *'''[[PHA within indications compounds]]''' |
− | *[[Antioxidants]]
| + | |
− | *[[Vitamin D]]
| + | |
− | *[[Anorganic nutrients Magnesium]]
| + | |
− | *[[Anorganic nutrients Selenium]]
| + | |
− | *[[Anorganic nutrients Zinc]]
| + | |
− | *[[Anorganic nutrients Lithium]]
| + | |
− | *[[Anorganic nutrients Copper]]
| + | |
− | *[[Anorganic nutrients Bismuth]]
| + | |
− | *[[Nutrition, general]]
| + | |
− | *[[Exercise, Vibration]]
| + | |
| | | |
| + | *'''[[PHA Serum products]]''' |
| | | |
− | *[[Traditional Chinese Medicine]] | + | *'''[[PHA Vaccination]]''' |
− | *[[Natural compounds]]
| + | |
| | | |
− | *[[Reconvalescent blood products, Passive vaccine]]
| + | PHA related options: |
− | *[[Plasmapheresis]]
| + | |
| | | |
− | *[[Immunodeviation]] e.g. by adjuvants or other vaccinations
| |
| *[[Radiation therapy]] | | *[[Radiation therapy]] |
| *[[Phototherapy]] | | *[[Phototherapy]] |
− | *[[Active vaccine]] | + | *[[Electric fields]] |
− | | + | |
| *[[Treatment other concepts]] | | *[[Treatment other concepts]] |
| | | |
− | ===-rest-===
| |
− |
| |
− |
| |
− |
| |
− |
| |
− |
| |
− |
| |
− |
| |
− |
| |
− |
| |
− |
| |
− |
| |
− |
| |
− |
| |
− |
| |
− |
| |
− |
| |
− |
| |
− |
| |
− |
| |
− |
| |
− |
| |
− |
| |
− |
| |
− |
| |
− |
| |
− |
| |
− |
| |
− |
| |
− |
| |
− |
| |
− |
| |
− |
| |
− |
| |
− |
| |
− |
| |
− |
| |
− |
| |
− |
| |
− |
| |
− |
| |
− |
| |
− |
| |
− |
| |
− |
| |
− |
| |
− |
| |
− |
| |
− |
| |
− | ===009===
| |
− |
| |
− |
| |
− |
| |
− |
| |
− |
| |
− |
| |
− |
| |
− |
| |
− |
| |
− |
| |
− |
| |
− |
| |
− | {{tp|p=32459647|t=2020. Intra-Rater and Inter-Rater Reliability of Tongue Coating Diagnosis in Traditional Chinese Medicine Using Smartphones: Quasi-Delphi Study.|pdf=|usr=009}}
| |
− |
| |
− |
| |
− |
| |
− |
| |
− |
| |
− |
| |
− |
| |
− |
| |
− |
| |
− |
| |
− |
| |
− |
| |
− |
| |
− |
| |
− |
| |
− |
| |
− |
| |
− |
| |
− |
| |
− |
| |
− |
| |
− |
| |
− |
| |
− |
| |
− |
| |
− |
| |
− |
| |
− |
| |
− |
| |
− |
| |
− |
| |
− | {{tp|p=32464494|t=2020. Homocysteine as a potential predictor of cardiovascular risk in patients with COVID-19.|pdf=|usr=009}}
| |
− |
| |
− |
| |
− | {{tp|p=32464492|t=2020. Can moderate intensity aerobic exercise be an effective and valuable therapy in preventing and controlling the pandemic of COVID-19?|pdf=|usr=009}}
| |
− |
| |
− |
| |
− |
| |
− |
| |
− |
| |
− |
| |
− |
| |
− | {{ttp|p=32516733|t=2020. B-cell engineering: A promising approach towards vaccine development for COVID-19.|pdf=|usr=009}}
| |
− |
| |
− |
| |
− | {{tp|p=32505075|t=2020. Fighting against frailty and sarcopenia - As well as COVID-19?|pdf=|usr=009}}
| |
− |
| |
− | {{tp|p=32505069|t=2020. Hydrogen peroxide and viral infections: A literature review with research hypothesis definition in relation to the current covid-19 pandemic.|pdf=|usr=009}}
| |
− |
| |
− |
| |
− |
| |
− |
| |
− |
| |
− | {{tp|p=32473390|t=2020. A review of South Indian medicinal plant has the ability to combat against deadly viruses along with COVID-19?|pdf=|usr=009}}
| |
− |
| |
− |
| |
− | {{tp|p=32442649|t=2020. Plant Solutions for the COVID-19 Pandemic and Beyond: Historical Reflections and Future Perspectives.|pdf=|usr=009}}
| |
− |
| |
− |
| |
− |
| |
− | {{tp|p=32445439|t=2020. Surgery Scheduling in a Crisis.|pdf=|usr=009}}
| |
− |
| |
− |
| |
− |
| |
− |
| |
− |
| |
− |
| |
− |
| |
− |
| |
− | {{tp|p=32431755|t=2020. The novel immunomodulatory biologic LMWF5A for pharmacological attenuation of the "cytokine storm" in COVID-19 patients: a hypothesis.|pdf=|usr=009}}
| |
− | {{tp|p=32451736|t=2020. Repurposing Quaternary Ammonium Compounds as Potential Treatments for COVID-19.|pdf=|usr=009}}
| |
− |
| |
− | {{tp|p=32445955|t=2020. Letter to the Editor in response to the article "Could IL-17 represent a new therapeutic target for the treatment and/or management of COVID-19-related respiratory syndrome?"|pdf=|usr=009}}
| |
− |
| |
− | {{tp|p=32430287|t=2020. Rho kinase inhibitors for SARS-CoV-2 induced acute respiratory distress syndrome: Support from Bartter's and Gitelman's syndrome patients.|pdf=|usr=009}}
| |
− |
| |
− |
| |
− | {{tp|p=32405226|t=2020. Anti-malarial drug, artemisinin and its derivatives for the treatment of respiratory diseases.|pdf=|usr=009}}
| |
− |
| |
− |
| |
− |
| |
− |
| |
− | {{tp|p=32470470|t=2020. Cathepsin L-selective inhibitors: A potentially promising treatment for COVID-19 patients.|pdf=|usr=009}}
| |
− | {{tp|p=32442437|t=2020. The proteasome as a druggable target with multiple therapeutic potentialities: Cutting and non-cutting edges.|pdf=|usr=009}}
| |
− | {{tp|p=32437972|t=2020. COVID-19: Beyond the virus. The use of Photodynamic Therapy for the Treatment of Infections in the Respiratory Tract.|pdf=|usr=009}}
| |
− |
| |
− | {{tp|p=32493609|t=2020. SGLT-2 inhibitors for COVID-19 - A miracle waiting to happen or just another beat around the bush?|pdf=|usr=009}}
| |
− |
| |
− | {{tp|p=32415971|t=2020. Use of statins in patients with COVID-19.|pdf=|usr=009}}
| |
− | {{tp|p=32415962|t=2020. Reply: Use of statins in patients with COVID-19.|pdf=|usr=009}}
| |
− | {{tp|p=32522574|t=2020. Coping with hypoxemia: Could erythropoietin (EPO) be an adjuvant treatment of COVID-19?|pdf=|usr=009}}
| |
− |
| |
− |
| |
− | {{tp|p=32426002|t=2020. Opciones Terapeuticas En El Manejo De Covid-19 Grave: Una Perspectiva De Reumatologia.|pdf=|usr=009}}
| |
− |
| |
− |
| |
− | {{tp|p=32414660|t=2020. Exercising in times of COVID-19: what do experts recommend doing within four walls?|pdf=|usr=009}}
| |
− |
| |
− |
| |
− |
| |
− |
| |
− |
| |
− |
| |
− | {{tp|p=32412544|t=2020. In silico fight against novel coronavirus by finding chromone derivatives as inhibitor of coronavirus main proteases enzyme.|pdf=|usr=009}}
| |
− |
| |
− |
| |
− | {{tp|p=32436460|t=2020. TNFalpha inhibitor may be effective for severe COVID-19: learning from toxic epidermal necrolysis.|pdf=|usr=009}}
| |
− |
| |
− | {{tp|p=32406985|t=2020. Interleukin-6 receptor antagonist therapy to treat SARS-CoV-2 driven inflammatory syndrome in a kidney transplant recipient.|pdf=|usr=009}}
| |
− |
| |
− | {{tp|p=32376108|t=2020. Archetype analysis of older adult immunization decision-making and implementation in 34 countries.|pdf=|usr=009}}
| |
− |
| |
− |
| |
− |
| |
− |
| |
− | {{tp|p=32532094|t=2020. The Anticoagulant Nafamostat Potently Inhibits SARS-CoV-2 S Protein-Mediated Fusion in a Cell Fusion Assay System and Viral Infection In Vitro in a Cell-Type-Dependent Manner.|pdf=|usr=009}}
| |
− |
| |
− | {{tp|p=32426090|t=2020. COVID-19, asthma, and biologic therapies: What we need to know.|pdf=|usr=009}}
| |
− |
| |
− | {{tp|p=32514854|t=2020. Biologikatherapie nach COVID-19-Infektion : Keine Reaktivierung einer COVID-19-Infektion bei positivem Antikorperstatus SARS-CoV-2 unter Biologikatherapie.|pdf=|usr=009}}
| |
− |
| |
− |
| |
− |
| |
− |
| |
− |
| |
− |
| |
− |
| |
− |
| |
− | {{tp|p=32574894|t=2020. Repurposing 0.5% povidone iodine solution in otorhinolaryngology practice in Covid 19 pandemic.|pdf=|usr=010}}
| |
− | {{tp|p=32583087|t=2020. IL-1R blockade is not effective in patients with hematological malignancies and severe SARS-CoV-2 infection.|pdf=|usr=010}}
| |
− |
| |
− |
| |
− |
| |
− | {{tp|p=32575554|t=2020. Targeting the Heme-Heme Oxygenase System to Prevent Severe Complications Following COVID-19 Infections.|pdf=|usr=010}}
| |
− |
| |
− | {{tp|p=32557214|t=2020. Potential Role of Anti-interleukin (IL)-6 Drugs in the Treatment of COVID-19: Rationale, Clinical Evidence and Risks.|pdf=|usr=010}}
| |
− |
| |
− |
| |
− |
| |
− | {{tp|p=32541865|t=2020. Boceprevir, GC-376, and calpain inhibitors II, XII inhibit SARS-CoV-2 viral replication by targeting the viral main protease.|pdf=|usr=010}}
| |
− |
| |
− | {{tp|p=32585295|t=2020. Inhibition of cytokine signaling by ruxolitinib and implications for COVID-19 treatment.|pdf=|usr=010}}
| |
− |
| |
− |
| |
− |
| |
− | {{tp|p=32558354|t=2020. Timing of antiviral treatment initiation is critical to reduce SARS-CoV-2 viral load.|pdf=|usr=010}}
| |
− | {{tp|p=32552848|t=2020. Compassionate use of others' immunity - understanding gut microbiome in Covid-19.|pdf=|usr=010}}
| |
− |
| |
− |
| |
− | {{tp|p=32578027|t=2020. A Rapid Advice Guideline for the Prevention of Novel Coronavirus Through Nutritional Intervention.|pdf=|usr=010}}
| |
− | {{tp|p=32562159|t=2020. The clinical value of two combination regimens in the Management of Patients Suffering from Covid-19 pneumonia: a single centered, retrospective, observational study.|pdf=|usr=010}}
| |
− |
| |
− |
| |
− | {{tp|p=32537890|t=2020. Observation and consideration on using of JAKi in clinical trials in times of COVID-19.|pdf=|usr=010}}
| |
− | {{tp|p=32592841|t=2020. A proposed mechanism for the possible therapeutic potential of Metformin in COVID-19.|pdf=|usr=010}}
| |
− | {{tp|p=32581194|t=2020. Targeting lymphocyte Kv1.3-channels to suppress cytokine storm in severe COVID-19: Can it be a novel therapeutic strategy?|pdf=|usr=010}}
| |
− |
| |
− |
| |
− | {{tp|p=32569833|t=2020. Exportin 1 inhibition as antiviral therapy.|pdf=|usr=010}}
| |
− |
| |
− |
| |
− | {{tp|p=32592145|t=2020. Identification of a Potential Peptide Inhibitor of SARS-CoV-2 Targeting its Entry into the Host Cells.|pdf=|usr=010}}
| |
− | {{tp|p=32574958|t=2020. Targeting innate immunity by blocking CD14: Novel approach to control inflammation and organ dysfunction in COVID-19 illness.|pdf=|usr=010}}
| |
− |
| |
− |
| |
− |
| |
− | {{tp|p=32562594|t=2020. Pregnant Women in Trials of COVID-19: A Critical Time to Consider Ethical Frameworks of Inclusion in Clinical Trials.|pdf=|usr=010}}
| |
− | {{tp|p=32561291|t=2020. Endoplasmic reticulum as a potential therapeutic target for covid-19 infection management?|pdf=|usr=010}}
| |
− | {{tp|p=32554535|t=2020. Potential role of memantine in the prevention and treatment of COVID-19: its antagonism of nicotinic acetylcholine receptors (nAChR) and beyond.|pdf=|usr=010}}
| |
− | {{tp|p=32578073|t=2020. Elderly at time of COronaVIrus disease 2019 (COVID-19): possible role of immunosenescence and malnutrition.|pdf=|usr=010}}
| |
− | {{tp|p=32577840|t=2020. Introduction: microbes, networks, knowledge-disease ecology and emerging infectious diseases in time of COVID-19.|pdf=|usr=010}}
| |
− | {{tp|p=32546029|t=2020. Case report: use of lenzilumab and tocilizumab for the treatment of coronavirus disease 2019.|pdf=|usr=010}}
| |
− |
| |
− | {{tp|p=32588335|t=2020. COVID-19, equipoise and observational studies: a reminder of forgotten issues.|pdf=|usr=010}}
| |
− | {{tp|p=32557206|t=2020. Rapid radiological improvement of COVID-19 pneumonia after treatment with tocilizumab.|pdf=|usr=010}}
| |
− |
| |
− |
| |
− |
| |
− |
| |
− |
| |
− | {{tp|p=32579907|t=2020. Paromomycin: a potential dual targeted drug effectively inhibits both Spike (S1) and Main Protease of COVID-19.|pdf=|usr=010}}
| |
− |
| |
− | {{tp|p=32592113|t=2020. Potential role of incretins in diabetes and COVID-19 infection: a hypothesis worth exploring.|pdf=|usr=010}}
| |
− |
| |
− |
| |
− |
| |
− |
| |
− |
| |
− | {{tp|p=32552021|t=2020. From "Infodemics" to Health Promotion: A Novel Framework for the Role of Social Media in Public Health.|pdf=|usr=010}}
| |
− | {{tp|p=32579022|t=2020. Lung Mechanics in COVID-19 Resemble RDS not ARDS: Could Surfactant be a Treatment?|pdf=|usr=010}}
| |
− | {{tp|p=32579020|t=2020. Treatment of COVID-19 by Inhaled NO to Reduce Shunt?|pdf=|usr=010}}
| |
− | {{tp|p=32551560|t=2020. Discovery of Aptamers Targeting Receptor-Binding Domain of the SARS-CoV-2 Spike Glycoprotein.|pdf=|usr=010}}
| |
− |
| |
− |
| |
− | {{tp|p=32561608|t=2020. Role of antimalarials in COVID-19: observational data from a cohort of rheumatic patients.|pdf=|usr=010}}
| |
− | {{tp|p=32574109|t=2020. Structural Basis of the SARS-CoV-2/SARS-CoV Receptor Binding and Small-Molecule Blockers as Potential Therapeutics.|pdf=|usr=010}}
| |
− |
| |
− |
| |
− |
| |
− |
| |
− |
| |
− | {{tp|p=32562762|t=2020. SGLT2 inhibition during the COVID-19 epidemic: Friend or foe?|pdf=|usr=010}}
| |
− |
| |
− |
| |
− | {{tp|p=32559771|t=2020. The Battle against COVID 19 Pandemic: What we Need to Know Before we "Test Fire" Ivermectin.|pdf=|usr=010}}
| |
− |
| |
− | {{tp|p=32567239|t=2020. Advantages of Using Lotteries to Select Participants for High-Demand Covid-19 Treatment Trials.|pdf=|usr=010}}
| |
− |
| |
− |
| |
− | {{tp|p=32552044|t=2020. Repurposing minocycline for COVID-19 management: mechanisms, opportunities, and challenges.|pdf=|usr=010}}
| |
− | {{tp|p=32576053|t=2020. Opioids/cannabinoids as a potential therapeutic approach in COVID-19 patients.|pdf=|usr=010}}
| |
− | {{tp|p=32553760|t=2020. TNFalpha-antagonist use and mucosal inflammation are associated with increased intestinal expression of SARS-CoV-2 host protease TMPRSS2 in patients with inflammatory bowel disease.|pdf=|usr=010}}
| |
− | {{tp|p=32553757|t=2020. Aminosalicylates and COVID-19: Facts or Coincidences?|pdf=|usr=010}}
| |
− | {{tp|p=32554621|t=2020. Infliximab for severe ulcerative colitis and subsequent SARS-CoV-2 pneumonia: a stone for two birds.|pdf=|usr=010}}
| |
− |
| |
− |
| |
− | {{tp|p=32557541|t=2020. A Comprehensive Review on Tocilizumab in COVID-19 Acute Respiratory Distress Syndrome.|pdf=|usr=010}}
| |
− | {{tp|p=32561274|t=2020. In silico prediction of potential inhibitors for the Main protease of SARS-CoV-2 using molecular docking and dynamics simulation based drug-repurposing.|pdf=|usr=010}}
| |
− |
| |
− |
| |
− |
| |
− | {{tp|p=32562701|t=2020. Apelin-potential therapy for COVID-19?|pdf=|usr=010}}
| |
− |
| |
− |
| |
− |
| |
− |
| |
− |
| |
− | {{tp|p=32555296|t=2020. Ruxolitinib for the treatment of SARS-CoV-2 induced acute respiratory distress syndrome (ARDS).|pdf=|usr=010}}
| |
− |
| |
− |
| |
− | {{tp|p=32590324|t=2020. Targeting adenosinergic pathway and adenosine A2A receptor signaling for the treatment of COVID-19: A hypothesis.|pdf=|usr=010}}
| |
− | {{tp|p=32575019|t=2020. Pirfenidone: A novel hypothetical treatment for COVID-19.|pdf=|usr=010}}
| |
− | {{tp|p=32558640|t=2020. Cibler la protease majeure du SARS-CoV-2 pour fabriquer un medicament efficace contre ce coronavirus.|pdf=|usr=010}}
| |
− |
| |
− | {{tp|p=32574789|t=2020. Predictive factors of mortality in patients treated with tocilizumab for acute respiratory distress syndrome related to coronavirus disease 2019 (COVID-19).|pdf=|usr=010}}
| |
− | {{tp|p=32570850|t=2020. Microbiota Modulating Nutritional Approaches to Countering the Effects of Viral Respiratory Infections Including SARS-CoV-2 through Promoting Metabolic and Immune Fitness with Probiotics and Plant Bioactives.|pdf=|usr=010}}
| |
− | {{tp|p=32546125|t=2020. Erythropoietin as candidate for supportive treatment of severe COVID-19.|pdf=|usr=010}}
| |
− | {{tp|p=32560203|t=2020. Quinoxaline Derivatives as Antiviral Agents: A Systematic Review.|pdf=|usr=010}}
| |
− |
| |
− | {{tp|p=32557405|t=2020. Recognition of Natural Products as Potential Inhibitors of COVID-19 Main Protease (Mpro): In-Silico Evidences.|pdf=|usr=010}}
| |
− | {{tp|p=32576980|t=2020. GM-CSF-based treatments in COVID-19: reconciling opposing therapeutic approaches.|pdf=|usr=010}}
| |
− |
| |
− |
| |
− | {{tp|p=32587103|t=2020. Extending rituximab dosing intervals in patients with MS during the COVID-19 pandemic and beyond?|pdf=|usr=010}}
| |
− | {{tp|p=32590117|t=2020. Nitric oxide dosed in short bursts at high concentrations may protect against Covid 19.|pdf=|usr=010}}
| |
− |
| |
− | {{tp|p=32564413|t=2020. Is 0.5% Hydrogen Peroxide Effective against SARS-CoV-2?|pdf=|usr=010}}
| |
− | {{tp|p=32587806|t=2020. A potential role for Galectin-3 inhibitors in the treatment of COVID-19.|pdf=|usr=010}}
| |
− |
| |
− |
| |
− | {{tp|p=32565309|t=2020. Effect of combination antiviral therapy on hematological profiles in 151 adults hospitalized with severe coronavirus disease 2019.|pdf=|usr=010}}
| |
− | {{tp|p=32592716|t=2020. Glycyrrhizin: An alternative drug for the treatment of COVID-19 infection and the associated respiratory syndrome?|pdf=|usr=010}}
| |
− | {{tp|p=32562826|t=2020. Therapeutic potential of resveratrol against emerging respiratory viral infections.|pdf=|usr=010}}
| |
− | {{tp|p=32542785|t=2020. Baricitinib: A review of pharmacology, safety and emerging clinical experience in COVID-19.|pdf=|usr=010}}
| |
− | {{tp|p=32592911|t=2020. Does photodynamic therapy have potential in the treatment of COVID 19 patients?|pdf=|usr=010}}
| |
− | {{tp|p=32585401|t=2020. Optical theranostics and treatment dosimetry for COVID-19 lung complications: towards increasing the survival rate of vulnerable populations.|pdf=|usr=010}}
| |
− | {{tp|p=32585400|t=2020. Ultraviolet-based biophotonic technologies for control and prevention of COVID-19, SARS and related disorders.|pdf=|usr=010}}
| |
− |
| |
− |
| |
− |
| |
− |
| |
− | {{tp|p=32552811|t=2020. E-cigarette-induced pulmonary inflammation and dysregulated repair are mediated by nAChR alpha7 receptor: role of nAChR alpha7 in SARS-CoV-2 Covid-19 ACE2 receptor regulation.|pdf=|usr=010}}
| |
− |
| |
− | {{tp|p=32557955|t=2020. Targeting the interleukin-17 pathway to prevent acute respiratory distress syndrome associated with SARS-CoV-2 infection.|pdf=|usr=010}}
| |
− | {{tp|p=32571730|t=2020. Anakinra, una alternativa potencial en el tratamiento de la infeccion respiratoria grave por SARS-CoV-2 refractaria a tocilizumab.|pdf=|usr=010}}
| |
− | {{ttp|p=32579014|t=2020. Systemic inflammatory response and thrombosis due to alterations in the gut microbiota in COVID-19.|pdf=|usr=010}}
| |
− | {{ttp|p=32579012|t=2020. COVID-19. Immunothrombosis and the gastrointestinal tract.|pdf=|usr=010}}
| |
− |
| |
− |
| |
− | {{tp|p=32593196|t=2020. The Another Side of COVID-19 in Alzheimer's Disease Patients: Drug-Drug Interactions.|pdf=|usr=010}}
| |
− |
| |
− |
| |
− |
| |
− | {{tp|p=32586154|t=2020. Montelukast's ability to fight COVID-19 infection.|pdf=|usr=010}}
| |
− | {{tp|p=32583729|t=2020. Immunoinformatics study to search epitopes of spike glycoprotein from SARS-CoV-2 as potential vaccine.|pdf=|usr=010}}
| |
− | {{tp|p=32579065|t=2020. Binding insight of clinically oriented drug famotidine with the identified potential target of SARS-CoV-2.|pdf=|usr=010}}
| |
− |
| |
− | {{tp|p=32579061|t=2020. Pharmacoinformatics and molecular dynamics simulation studies reveal potential covalent and FDA-approved inhibitors of SARS-CoV-2 main protease 3CL(pro).|pdf=|usr=010}}
| |
− |
| |
− | {{tp|p=32573355|t=2020. Targeting SARS-COV-2 non-structural protein 16: a virtual drug repurposing study.|pdf=|usr=010}}
| |
− |
| |
− | {{tp|p=32571168|t=2020. Drug repurposing against SARS-CoV-2 using E-pharmacophore based virtual screening, molecular docking and molecular dynamics with main protease as the target.|pdf=|usr=010}}
| |
− |
| |
− | {{tp|p=32568618|t=2020. Chemical-informatics approach to COVID-19 drug discovery: Monte Carlo based QSAR, virtual screening and molecular docking study of some in-house molecules as papain-like protease (PLpro) inhibitors.|pdf=|usr=010}}
| |
− | {{tp|p=32568613|t=2020. Evaluation of green tea polyphenols as novel corona virus (SARS CoV-2) main protease (Mpro) inhibitors - an in silico docking and molecular dynamics simulation study.|pdf=|usr=010}}
| |
− | {{tp|p=32568013|t=2020. Virtual screening and dynamics of potential inhibitors targeting RNA binding domain of nucleocapsid phosphoprotein from SARS-CoV-2.|pdf=|usr=010}}
| |
− | {{tp|p=32568012|t=2020. Sars-cov-2 host entry and replication inhibitors from Indian ginseng: an in-silico approach.|pdf=|usr=010}}
| |
− | {{tp|p=32567995|t=2020. Promising inhibitors of main protease of novel corona virus to prevent the spread of COVID-19 using docking and molecular dynamics simulation.|pdf=|usr=010}}
| |
− | {{tp|p=32567989|t=2020. In silico identification of potential inhibitors from Cinnamon against main protease and spike glycoprotein of SARS CoV-2.|pdf=|usr=010}}
| |
− | {{tp|p=32567979|t=2020. Structure-based virtual screening and molecular dynamics simulation of SARS-CoV-2 Guanine-N7 methyltransferase (nsp14) for identifying antiviral inhibitors against COVID-19.|pdf=|usr=010}}
| |
− | {{tp|p=32567501|t=2020. Constituents of buriti oil (Mauritia flexuosa L.) like inhibitors of the SARS-Coronavirus main peptidase: an investigation by docking and molecular dynamics.|pdf=|usr=010}}
| |
− |
| |
− |
| |
− |
| |
− | {{tp|p=32559419|t=2020. Therapeutic blockade of granulocyte macrophage colony-stimulating factor in COVID-19-associated hyperinflammation: challenges and opportunities.|pdf=|usr=010}}
| |
− |
| |
− | {{tp|p=32574572|t=2020. Letter to the editor: Immunomodulation by phsphodiesterase-4 inhibitor in COVID-19 patients.|pdf=|usr=010}}
| |
− | {{tp|p=32579258|t=2020. Antiviral activities of mycophenolic acid and IMD-0354 against SARS-CoV-2.|pdf=|usr=010}}
| |
− | {{tp|p=32578354|t=2020. Obesity and COVID-19: The mTOR pathway as a possible culprit.|pdf=|usr=010}}
| |
− |
| |
− | {{tp|p=32588453|t=2020. Covid-19 and Thymoquinone: Connecting the Dots.|pdf=|usr=010}}
| |
− | {{ttp|p=32552307|t=2020. A rationale for blocking thromboinflammation in COVID-19 with Btk inhibitors.|pdf=|usr=010}}
| |
− |
| |
− | {{tp|p=32569363|t=2020. Outcomes in Patients with Severe COVID-19 Disease Treated with Tocilizumab - A Case- Controlled Study.|pdf=|usr=010}}
| |
− |
| |
− | {{tp|p=32568376|t=2020. Successful treatment of severe COVID-19 with subcutaneous anakinra as a sole treatment.|pdf=|usr=010}}
| |
− | {{tp|p=32556278|t=2020. Real-life experience of tocilizumab use in COVID-19 patients.|pdf=|usr=010}}
| |
− | {{tp|p=32543892|t=2020. Development of a simple, interpretable and easily transferable QSAR model for quick screening antiviral databases in search of novel 3C-like protease (3CLpro) enzyme inhibitors against SARS-CoV diseases.|pdf=|usr=010}}
| |
− |
| |
− |
| |
− | {{tp|p=32573990|t=2020. Heart Transplant Recipient Patient with COVID-19 Treated with Tocilizumab.|pdf=|usr=010}}
| |
− | {{tp|p=32584762|t=2020. [Rationales for using JAK 1/2 inhibitors in severely afflicted patients with COVID-19 pneumonia].|pdf=|usr=010}}
| |
− |
| |
− |
| |
− |
| |
− |
| |
− | {{tp|p=32547694|t=2020. Blocking Coronavirus 19 Infection via the SARS-CoV-2 Spike Protein: Initial Steps.|pdf=|usr=011}}
| |
− | {{tp|p=32547693|t=2020. A Role for Metal-Based Drugs in Fighting COVID-19 Infection? The Case of Auranofin.|pdf=|usr=011}}
| |
− |
| |
− |
| |
− | {{tp|p=32593520|t=2020. Tocilizumab en nino con leucemia linfoblastica aguda y sindrome de liberacion de citoquinas asociado a COVID-19.|pdf=|usr=011}}
| |
− | {{tp|p=32566569|t=2020. Appealing for efficient, well organized clinical trials on COVID-19.|pdf=|usr=011}}
| |
− |
| |
− |
| |
− |
| |
− |
| |
− | {{tp|p=32545171|t=2020. Antimicrobial Photodynamic Therapy in the Control of COVID-19.|pdf=|usr=011}}
| |
− | {{tp|p=32545518|t=2020. Nrf2 Activator PB125((R)) as a Potential Therapeutic Agent against COVID-19.|pdf=|usr=011}}
| |
− |
| |
− | {{tp|p=32536457|t=2020. Should We Try SARS-CoV-2 Helicase Inhibitors for COVID-19 Therapy?|pdf=|usr=011}}
| |
− | {{tp|p=32546446|t=2020. Could Respiratory Fluoroquinolones, Levofloxacin and Moxifloxacin, Prove to be Beneficial as an Adjunct Treatment in COVID-19?|pdf=|usr=011}}
| |
− |
| |
− | {{tp|p=32594322|t=2020. Antiviral activity of berberine.|pdf=|usr=011}}
| |
− |
| |
− | {{tp|p=32593613|t=2020. Testing of natural products in clinical trials targeting the SARS-CoV-2 (Covid-19) Viral Spike Protein-Angiotensin Converting Enzyme-2 (ACE2) interaction.|pdf=|usr=011}}
| |
− |
| |
− |
| |
− |
| |
− |
| |
− | {{tp|p=32599963|t=2020. Class A G Protein-Coupled Receptor Antagonist Famotidine as a Therapeutic Alternative Against SARS-CoV2: An In Silico Analysis.|pdf=|usr=011}}
| |
− | {{tp|p=32536632|t=2020. Potential for jaktinib hydrochloride to treat cytokine storms in patients with COVID-19.|pdf=|usr=011}}
| |
− | {{tp|p=32459144|t=2020. Discovery of alliin as a putative inhibitor of the main protease of SARS-CoV-2 by molecular docking.|pdf=|usr=011}}
| |
− | {{tp|p=32532425|t=2020. Inclusion of pregnant women in clinical trials of COVID-19 therapies: what have we learned?|pdf=|usr=011}}
| |
− | {{tp|p=32557557|t=2020. Harnessing resolving-based therapeutics to treat pulmonary viral infections: What can the future offer to COVID-19?|pdf=|usr=011}}
| |
− |
| |
− | {{tp|p=32571773|t=2020. Oseltamivir for coronavirus illness: post-hoc exploratory analysis of an open-label, pragmatic, randomised controlled trial in European primary care from 2016 to 2018.|pdf=|usr=011}}
| |
− |
| |
− |
| |
− |
| |
− |
| |
− |
| |
− |
| |
− | {{tp|p=32603679|t=2020. Calcineurin inhibitors revisited: A new paradigm for COVID-19?|pdf=|usr=011}}
| |
− |
| |
− |
| |
− | {{tp|p=32383125|t=2020. Prophylaxie post-exposition ou traitement preventif pour le syndrome respiratoire aigu severe du coronavirus 2 (SARS-CoV-2) : protocole d'etude pour une etude randomisee controlee pragmatique.|pdf=|usr=011}}
| |
− |
| |
− | {{tp|p=32385712|t=2020. Inflammation resolution: a dual-pronged approach to averting cytokine storms in COVID-19?|pdf=|usr=011}}
| |
− | {{tp|p=32389579|t=2020. Irradiation pulmonaire a faible dose pour l'orage de cytokines du COVID-19 : pourquoi pas ?|pdf=|usr=011}}
| |
− | {{tp|p=32411313|t=2020. FAVORABLE ANAKINRA RESPONSES IN SEVERE COVID-19 PATIENTS WITH SECONDARY HEMOPHAGOCYTIC LYMPHOHISTIOCYTOSIS.|pdf=|usr=011}}
| |
− |
| |
− |
| |
− |
| |
− |
| |
− | {{tp|p=32409956|t=2020. Possible application of H2S-producing compounds in therapy of coronavirus (COVID-19) infection and pneumonia.|pdf=|usr=011}}
| |
− |
| |
− | {{tp|p=32599278|t=2020. Imatinib for COVID-19: A case report.|pdf=|usr=011}}
| |
− | {{tp|p=32607779|t=2020. Can iron chelation as an adjunct treatment of COVID-19 improve the clinical outcome?|pdf=|usr=011}}
| |
− | {{tp|p=32594204|t=2020. The added value of pirfenidone to fight inflammation and fibrotic state induced by SARS-CoV-2 : Anti-inflammatory and anti-fibrotic therapy could solve the lung complications of the infection?|pdf=|usr=011}}
| |
− |
| |
− |
| |
− |
| |
− | {{tp|p=32598985|t=2020. Potential therapeutic use of ebselen for COVID-19 and other respiratory viral infections.|pdf=|usr=011}}
| |
− |
| |
− |
| |
− | {{tp|p=32606823|t=2020. Potential Role of Nrf2 Activators with Dual Antiviral and Anti-Inflammatory Properties in the Management of Viral Pneumonia.|pdf=|usr=011}}
| |
− |
| |
− | {{tp|p=32610153|t=2020. COVID-19 trials in Italy: A call for simplicity, top standards and global pooling.|pdf=|usr=011}}
| |
− |
| |
− |
| |
− |
| |
− |
| |
− |
| |
− | {{tp|p=32593183|t=2020. Ruxolitinib for tocilizumab-refractory severe COVID-19 infection.|pdf=|usr=011}}
| |
− |
| |
− | {{ttp|p=32584421|t=2020. Combined IL-6 and JAK-STAT inhibition therapy in COVID-19 related sHLH, potential game changer.|pdf=|usr=011}}
| |
− | {{tp|p=32584416|t=2020. Amelioration of COVID-19 related cytokine storm syndrome: Parallels to chimeric antigen receptor-T cell cytokine release syndrome.|pdf=|usr=011}}
| |
− |
| |
− | {{tp|p=32536693|t=2020. Antiviral Therapy during the Coronavirus Disease (COVID-19) Pandemic: Is It Appropriate to Treat Patients in the Absence of Significant Evidence?|pdf=|usr=011}}
| |
− |
| |
− | {{tp|p=32553536|t=2020. Tocilizumab Treatment for Cytokine Release Syndrome in Hospitalized COVID-19 Patients: Survival and Clinical Outcomes.|pdf=|usr=011}}
| |
− |
| |
− |
| |
− | {{tp|p=32573419|t=2020. Biomarker variation in patients successfully treated with tocilizumab for severe coronavirus disease 2019 (COVID-19): results of a multidisciplinary collaboration.|pdf=|usr=011}}
| |
− | {{tp|p=32597466|t=2020. Use of Baricitinib in Patients with Moderate and Severe COVID-19.|pdf=|usr=011}}
| |
− |
| |
− | {{tp|p=32594120|t=2020. Drug-induced liver injury in a COVID-19 patient: potential interaction of remdesivir with P-glycoprotein inhibitors.|pdf=|usr=011}}
| |
− | {{tp|p=32575124|t=2020. Compassionate Use of Tocilizumab for Treatment of SARS-CoV-2 Pneumonia.|pdf=|usr=011}}
| |
− |
| |
− |
| |
− |
| |
− | {{tp|p=32536564|t=2020. IL-15 immunotherapy is a viable strategy for COVID-19.|pdf=|usr=011}}
| |
− | {{tp|p=32540737|t=2020. Use of pioglitazone in people with type 2 diabetes mellitus with coronavirus disease 2019 (COVID-19): Boon or bane?|pdf=|usr=011}}
| |
− |
| |
− | {{tp|p=32603531|t=2020. Febuxostat therapy in outpatients with suspected COVID-19: A clinical trial.|pdf=|usr=011}}
| |
− |
| |
− |
| |
− | {{tp|p=32518817|t=2020. Synthesis, Spectroscopic Characterizations of Novel Norcantharimides, Their ADME Properties and Docking Studies Against COVID-19 M(pr) degrees .|pdf=|usr=011}}
| |
− | {{tp|p=32572383|t=2020. Evaluation of the Inhibitory Activities of COVID-19 of Melaleuca cajuputi Oil Using Docking Simulation.|pdf=|usr=011}}
| |
− |
| |
− | {{tp|p=32548601|t=2020. Ventilation in the Dental Clinic: An Effective Measure to Control Droplets and Aerosols during the Coronavirus Pandemic and Beyond.|pdf=|usr=011}}
| |
− | {{tp|p=32548600|t=2020. Preventive and Control Measures for the Coronavirus Pandemic in Clinical Dentistry.|pdf=|usr=011}}
| |
− | {{tp|p=32242749|t=2020. Substituting Angiotensin-(1-7) to Prevent Lung Damage in SARS-CoV-2 Infection?|pdf=|usr=011}}
| |
− |
| |
− | {{tp|p=32533455|t=2020. Azithromycin for COVID-19: More Than Just an Antimicrobial?|pdf=|usr=011}}
| |
− |
| |
− |
| |
− | {{tp|p=32544611|t=2020. Development of child immunity in the context of COVID-19 pandemic.|pdf=|usr=011}}
| |
− |
| |
− | {{tp|p=32417594|t=2020. Supplements for COVID-19: A modifiable environmental risk.|pdf=|usr=011}}
| |
− | {{tp|p=32405269|t=2020. Targeting T-cell senescence and cytokine storm with rapamycin to prevent severe progression in COVID-19.|pdf=|usr=011}}
| |
− | {{tp|p=32409832|t=2020. SARS-CoV-2 pandemic : Time to revive the cyclophilin inhibitor alisporivir.|pdf=|usr=011}}
| |
− |
| |
− | {{tp|p=32407539|t=2020. Clinical Trials for COVID-19: Can we Better Use the Short Window of Opportunity?|pdf=|usr=011}}
| |
− |
| |
− | {{tp|p=32311763|t=2020. Off-Label Therapies for COVID-19-Are We All In This Together?|pdf=|usr=011}}
| |
− |
| |
− |
| |
− | {{tp|p=32388748|t=2020. Reply to Rheumatologists' perspective on coronavirus disease 19: is heparin the dark horse for COVID-19?|pdf=|usr=011}}
| |
− |
| |
− | {{tp|p=32575032|t=2020. Participation of more community hospitals in randomized trials of treatments for COVID-19 is needed.|pdf=|usr=011}}
| |
− |
| |
− | {{tp|p=32392494|t=2020. Sample sizes in COVID-19-related research.|pdf=|usr=011}}
| |
− | {{tp|p=32485652|t=2020. Interaction of the prototypical alpha-ketoamide inhibitor with the SARS-CoV-2 main protease active site in silico: Molecular dynamic simulations highlight the stability of the ligand-protein complex.|pdf=|usr=011}}
| |
− |
| |
− |
| |
− | {{tp|p=32384906|t=2020. Use of triiodothyronine to treat critically ill COVID-19 patients: a new clinical trial.|pdf=|usr=011}}
| |
− |
| |
− |
| |
− | {{tp|p=32513242|t=2020. Blocking mineralocorticoid receptor with spironolactone may have a wide range of therapeutic actions in severe COVID-19 disease.|pdf=|usr=011}}
| |
− | {{tp|p=32513225|t=2020. Neutrophil Elastase Inhibitors: A potential prophylactic treatment option for SARS-CoV-2-induced respiratory complications?|pdf=|usr=011}}
| |
− | {{tp|p=32487260|t=2020. Precision medicine for COVID-19: a call for better clinical trials.|pdf=|usr=011}}
| |
− | {{tp|p=32487139|t=2020. Cyclosporine A: a valid candidate to treat COVID-19 patients with acute respiratory failure?|pdf=|usr=011}}
| |
− |
| |
− |
| |
− |
| |
− |
| |
− | {{tp|p=32494546|t=2020. Vaccines and Drug Therapeutics to Lock Down Novel Coronavirus Disease 2019 (COVID-19): A Systematic Review of Clinical Trials.|pdf=|usr=011}}
| |
− |
| |
− | {{tp|p=32550078|t=2020. Heated Air Delivery by Micro-Sauna: An Experimental Treatment Prototype Concept for Coronavirus Disease 2019.|pdf=|usr=011}}
| |
− |
| |
− | {{tp|p=32563554|t=2020. Should we unstress SARS-CoV-2 infected cells?|pdf=|usr=011}}
| |
− |
| |
− |
| |
− |
| |
− | {{tp|p=32593491|t=2020. Molecular pharmacology of ciclesonide against SARS-CoV-2.|pdf=|usr=011}}
| |
− |
| |
− |
| |
− | {{tp|p=32605278|t=2020. Exploring Sodium Glucose Co-Transporter-2 (SGLT2) Inhibitors for Organ Protection in COVID-19.|pdf=|usr=011}}
| |
− |
| |
− |
| |
− | {{tp|p=32605149|t=2020. Bioactive Indolyl Diketopiperazines from the Marine Derived Endophytic Aspergillus versicolor DY180635.|pdf=|usr=011}}
| |
− | {{tp|p=32593831|t=2020. Plausible role of combination of Chlorpromazine hydrochloride and Teicoplanin against COVID-19.|pdf=|usr=011}}
| |
− |
| |
− | {{tp|p=32593740|t=2020. Irisin modulates genes associated with severe coronavirus disease (COVID-19) outcome in human subcutaneous adipocytes.|pdf=|usr=011}}
| |
− | {{tp|p=32602074|t=2020. Structure-based screening of novel lichen compounds against SARS Coronavirus main protease (Mpro) as potentials inhibitors of COVID-19.|pdf=|usr=011}}
| |
− |
| |
− |
| |
− | {{tp|p=32597315|t=2020. Repurposing of FDA-approved antivirals, antibiotics, anthelmintics, antioxidants, and cell protectives against SARS-CoV-2 papain-like protease.|pdf=|usr=011}}
| |
− | {{tp|p=32608329|t=2020. In silico analysis and identification of promising hits against 2019 novel coronavirus 3C-like main protease enzyme.|pdf=|usr=011}}
| |
− | {{tp|p=32520770|t=2020. Overview of Coronavirus Disease 2019 (COVID-19): Treatment Updates and Advances.|pdf=|usr=011}}
| |
− | {{tp|p=32530870|t=2020. Rapid Review: Nonsteroidal Anti-inflammatory Agents and Aminosalicylates in COVID-19 Infections.|pdf=|usr=011}}
| |
− | {{tp|p=32570043|t=2020. Profiling COVID-19 pneumonia progressing into the cytokine storm syndrome: Results from a single Italian Centre study on tocilizumab versus standard of care.|pdf=|usr=011}}
| |
− |
| |
− |
| |
− |
| |
− |
| |
− | {{tp|p=32579254|t=2020. SARS-CoV-2 and SARS-CoV: Virtual Screening of Potential inhibitors targeting RNA-dependent RNA polymerase activity (NSP12).|pdf=|usr=011}}
| |
− | {{tp|p=32568411|t=2020. Tocilizumab's efficacy in patients with Coronavirus Disease 2019 (COVID-19) is determined by the presence of cytokine storm.|pdf=|usr=011}}
| |
− | {{tp|p=32574379|t=2020. A sugar-coated strategy to treat a rare neurologic disease provides a blueprint for a decoy glycan therapeutic and a potential vaccine for CoViD-19: An Editorial Highlight for "Selective inhibition of anti-MAG IgM autoantibody binding to myelin by an antigen specific glycopolymer"on https://doi.org/10.1111/jnc.15021.|pdf=|usr=011}}
| |
− | {{ttp|p=32597503|t=2020. Melatonin Restores Neutrophil Functions and Prevents Apoptosis amid Dysfunctional Glutathione Redox System.|pdf=|usr=011}}
| |
− | {{tp|p=32543164|t=2020. The comparison of the effectiveness of lincocin(R) and azitro(R) in the treatment of covid-19-associated pneumonia: A prospective study.|pdf=|usr=011}}
| |
− | {{tp|p=32608097|t=2020. Comparison of In Vitro Inactivation of SARS CoV-2 with Hydrogen Peroxide and Povidone-Iodine Oral Antiseptic Rinses.|pdf=|usr=011}}
| |
− |
| |
− |
| |
− | {{tp|p=32541129|t=2020. Intermittent high dosage oxygen treats COVID-19 infection: the Chinese studies.|pdf=|usr=011}}
| |
− | {{tp|p=32541128|t=2020. Hyperbaric oxygen treatment of novel coronavirus (COVID-19) respiratory failure.|pdf=|usr=011}}
| |
− |
| |
− |
| |
− | {{tp|p=32447665|t=2020. Mit IL-6-Inhibitor gegen COVID-19 : Corona-Pandemie.|pdf=|usr=011}}
| |
− | {{tp|p=32342366|t=2020. Autophagie - ein Ansatzpunkt fur ein Medikament gegen COVID-19? : Kampf gegen das Coronavirus.|pdf=|usr=011}}
| |
− |
| |
− |
| |
− |
| |
− | {{tp|p=32524646|t=2020. Lithium as a candidate treatment for COVID-19: Promises and pitfalls.|pdf=|usr=011}}
| |
− |
| |
− | {{tp|p=32425222|t=2020. Repurposing chlorpromazine to treat COVID-19: The reCoVery study.|pdf=|usr=011}}
| |
− |
| |
− |
| |
− | {{tp|p=32544799|t=2020. Immune checkpoint inhibitors: a physiology-driven approach to the treatment of coronavirus disease 2019.|pdf=|usr=011}}
| |
− |
| |
− |
| |
− | {{tp|p=32563813|t=2020. Synthesis of adenine dinucleosides SAM analogs as specific inhibitors of SARS-CoV nsp14 RNA cap guanine-N7-methyltransferase.|pdf=|usr=011}}
| |
− | {{tp|p=32525005|t=2020. Effective block by pirfenidone, an antifibrotic pyridone compound (5-methyl-1-phenylpyridin-2[H-1]-one), on hyperpolarization-activated cation current: An additional but distinctive target.|pdf=|usr=011}}
| |
− |
| |
− |
| |
− | {{tp|p=32399192|t=2020. Recent advances in influenza vaccines.|pdf=|usr=011}}
| |
− |
| |
− | {{tp|p=32596244|t=2020. The Inhibitory Effect of Curcumin on Virus-Induced Cytokine Storm and Its Potential Use in the Associated Severe Pneumonia.|pdf=|usr=011}}
| |
− | {{tp|p=32595653|t=2020. Cytokine Release Syndrome (CRS) and Nicotine in COVID-19 Patients: Trying to Calm the Storm.|pdf=|usr=011}}
| |
− |
| |
− | {{tp|p=32574274|t=2020. Thalidomide-Revisited: Are COVID-19 Patients Going to Be the Latest Victims of Yet Another Theoretical Drug-Repurposing?|pdf=|usr=011}}
| |
− | {{tp|p=32574273|t=2020. Symptomatic Protective Action of Glycyrrhizin (Licorice) in COVID-19 Infection?|pdf=|usr=011}}
| |
− |
| |
− |
| |
− |
| |
− |
| |
− |
| |
− |
| |
− | {{tp|p=32582742|t=2020. The Use of Microbial Accessible and Fermentable Carbohydrates and/or Butyrate as Supportive Treatment for Patients With Coronavirus SARS-CoV-2 Infection.|pdf=|usr=011}}
| |
− |
| |
− | {{tp|p=32574339|t=2020. Lung Surfactant for Pulmonary Barrier Restoration in Patients With COVID-19 Pneumonia.|pdf=|usr=011}}
| |
− | {{tp|p=32574332|t=2020. Three Novel COVID-19 Pneumonia Cases Successfully Treated With Lopinavir/Ritonavir.|pdf=|usr=011}}
| |
− | {{tp|p=32574331|t=2020. May Polyphenols Have a Role Against Coronavirus Infection? An Overview of in vitro Evidence.|pdf=|usr=011}}
| |
− | {{tp|p=32574327|t=2020. Therapeutic Algorithm for Use of Melatonin in Patients With COVID-19.|pdf=|usr=011}}
| |
− | {{tp|p=32574320|t=2020. Doxycycline: From Ocular Rosacea to COVID-19 Anosmia. New Insight Into the Coronavirus Outbreak.|pdf=|usr=011}}
| |
− |
| |
− | {{tp|p=32582138|t=2020. Intestinal Flora as a Potential Strategy to Fight SARS-CoV-2 Infection.|pdf=|usr=011}}
| |
− | {{tp|p=32582137|t=2020. Biosurfactants: A Covid-19 Perspective.|pdf=|usr=011}}
| |
− | {{tp|p=32582134|t=2020. Main Clinical Features of COVID-19 and Potential Prognostic and Therapeutic Value of the Microbiota in SARS-CoV-2 Infections.|pdf=|usr=011}}
| |
− |
| |
− | {{tp|p=32581810|t=2020. Combination of Ruxolitinib and Eculizumab for Treatment of Severe SARS-CoV-2-Related Acute Respiratory Distress Syndrome: A Controlled Study.|pdf=|usr=011}}
| |
− | {{tp|p=32581809|t=2020. Repositioning Chromones for Early Anti-inflammatory Treatment of COVID-19.|pdf=|usr=011}}
| |
− | {{tp|p=32574238|t=2020. An Open Question: Is It Rational to Inhibit the mTor-Dependent Pathway as COVID-19 Therapy?|pdf=|usr=011}}
| |
− |
| |
− |
| |
− |
| |
− |
| |
− | {{tp|p=32574290|t=2020. Using Probiotics to Flatten the Curve of Coronavirus Disease COVID-2019 Pandemic.|pdf=|usr=011}}
| |
− |
| |
− | {{tp|p=32547908|t=2020. Ultraviolet irradiation doses for coronavirus inactivation - review and analysis of coronavirus photoinactivation studies.|pdf=|usr=011}}
| |
− | {{tp|p=32566483|t=2020. Doxycycline as a potential partner of COVID-19 therapies.|pdf=|usr=011}}
| |
− |
| |
− |
| |
− | {{tp|p=32540428|t=2020. Eltrombopag is a potential target for drug intervention in SARS-CoV-2 spike protein.|pdf=|usr=011}}
| |
− | {{tp|p=32537482|t=2020. Screening and druggability analysis of some plant metabolites against SARS-CoV-2: An integrative computational approach.|pdf=|usr=011}}
| |
− |
| |
− |
| |
− | {{tp|p=32534505|t=2020. Sitagliptin Repositioning in SARS-CoV-2: Effects on ACE-2, CD-26, and Inflammatory Cytokine Storms in the Lung.|pdf=|usr=011}}
| |
− | {{tp|p=32558435|t=2020. Rationale for Evaluating PDE4 Inhibition for Mitigating against Severe Inflammation in COVID-19 Pneumonia and Beyond.|pdf=|usr=011}}
| |
− | {{tp|p=32565398|t=2020. Effects of Micronutrients or Conditional Amino Acids on COVID-19-Related Outcomes: An Evidence Analysis Center Scoping Review.|pdf=|usr=011}}
| |
− |
| |
− | {{tp|p=32552595|t=2020. Natural compounds from Clerodendrum spp. as possible therapeutic candidates against SARS-CoV-2: An in silico investigation.|pdf=|usr=011}}
| |
− | {{tp|p=32552534|t=2020. Identification of a novel dual-target scaffold for 3CLpro and RdRp proteins of SARS-CoV-2 using 3D-similarity search, molecular docking, molecular dynamics and ADMET evaluation.|pdf=|usr=011}}
| |
− | {{tp|p=32552462|t=2020. Identification of bioactive compounds from Glycyrrhiza glabra as possible inhibitor of SARS-CoV-2 spike glycoprotein and non-structural protein-15: a pharmacoinformatics study.|pdf=|usr=011}}
| |
− | {{tp|p=32552361|t=2020. Combined drug repurposing and virtual screening strategies with molecular dynamics simulation identified potent inhibitors for SARS-CoV-2 main protease (3CLpro).|pdf=|usr=011}}
| |
− | {{tp|p=32544024|t=2020. An in silico approach for identification of novel inhibitors as potential therapeutics targeting COVID-19 main protease.|pdf=|usr=011}}
| |
− | {{tp|p=32543978|t=2020. Computational investigation on Andrographis paniculata phytochemicals to evaluate their potency against SARS-CoV-2 in comparison to known antiviral compounds in drug trials.|pdf=|usr=011}}
| |
− | {{tp|p=32538276|t=2020. Repurposing cefuroxime for treatment of COVID-19: a scoping review of in silico studies.|pdf=|usr=011}}
| |
− |
| |
− |
| |
− |
| |
− | {{ttp|p=32600125|t=2020. Targeting the gut-lung microbiota axis by means of a high-fibre diet and probiotics may have anti-inflammatory effects in COVID-19 infection.|pdf=|usr=011}}
| |
− |
| |
− |
| |
− |
| |
− | {{tp|p=32605306|t=2020. Saxifraga spinulosa-Derived Components Rapidly Inactivate Multiple Viruses Including SARS-CoV-2.|pdf=|usr=011}}
| |
− |
| |
− |
| |
− |
| |
− | {{tp|p=32597513|t=2020. New intrigant possibility for prevention of coronavirus pneumonitis: natural purified polyphenols.|pdf=|usr=011}}
| |
− | {{tp|p=32541085|t=2020. Citokinellenes terapia az uj tipusu koronavirus okozta megbetegedes (COVID-19) kezeleseben - tocilizumab elsokent valo alkalmazasa egy hazai infektologiai osztalyon.|pdf=|usr=011}}
| |
− |
| |
− | {{tp|p=32579049|t=2020. Photobiomodulation: Shining Light on COVID-19.|pdf=|usr=011}}
| |
− | {{tp|p=32579493|t=2020. Response to: Can Transdermal Photobiomodulation Help Us at the Time of COVID-19?|pdf=|usr=011}}
| |
− | {{tp|p=32579491|t=2020. Author's Response to Ferreira: Can Transdermal Photobiomodulation Help Us at the Time of COVID-19? An Update.|pdf=|usr=011}}
| |
− |
| |
− |
| |
− |
| |
− |
| |
− |
| |
− | {{tp|p=32604223|t=2020. Therapeutic Potential of B-1a Cells in COVID-19.|pdf=|usr=011}}
| |
− | {{tp|p=32553502|t=2020. Ultrafast response of the French Society of Pharmacology and Therapeutics to the COVID-19 pandemic.|pdf=|usr=011}}
| |
− |
| |
− | {{tp|p=32574447|t=2020. HBO2 for COVID-19: Clinical trials at clinicaltrials.gov.|pdf=|usr=011}}
| |
− | {{tp|p=32574446|t=2020. UHMS Position Statement: Hyperbaric Oxygen (HBO2) for COVID-19 Patients.|pdf=|usr=011}}
| |
− | {{tp|p=32574433|t=2020. Hyperbaric oxygen therapy may be effective to improve hypoxemia in patients with severe COVID-2019 pneumonia: two case reports.|pdf=|usr=011}}
| |
− | {{tp|p=32574432|t=2020. Hyperbaric oxygen as a treatment for COVID-19 infection?|pdf=|usr=011}}
| |
− | {{tp|p=32567972|t=2020. Autophagy and SARS-CoV-2 infection: Apossible smart targeting of the autophagy pathway.|pdf=|usr=011}}
| |
− |
| |
− |
| |
− | {{tp|p=32530282|t=2020. Computational Determination of Potential Inhibitors of SARS-CoV-2 Main Protease.|pdf=|usr=011}}
| |
− | {{tp|p=32539372|t=2020. Fragment Molecular Orbital Based Interaction Analyses on COVID-19 Main Protease - Inhibitor N3 Complex (PDB ID: 6LU7).|pdf=|usr=011}}
| |
− | {{tp|p=32551639|t=2020. Discovery of New Hydroxyethylamine Analogs against 3CL(pro) Protein Target of SARS-CoV-2: Molecular Docking, Molecular Dynamics Simulation, and Structure-Activity Relationship Studies.|pdf=|usr=011}}
| |
− |
| |
− |
| |
− | {{tp|p=32551855|t=2020. Effects of Gene-Eden-VIR and Novirin on SARS-CoV: Implications for COVID-19.|pdf=|usr=011}}
| |
− |
| |
− | {{tp|p=32592703|t=2020. Retrospective, multicenter study on the impact of baricitinib in COVID-19 moderate pneumonia.|pdf=|usr=011}}
| |
− | {{tp|p=32579985|t=2020. Etoposide treatment adjunctive to immunosuppressants for critically ill COVID-19 patients: Etoposide for severe COVID-19 patients.|pdf=|usr=011}}
| |
− |
| |
− | {{tp|p=32515499|t=2020. Higher levels of IL-6 early after tocilizumab distinguish survivors from non-survivors in COVID-19 pneumonia: a possible indication for deeper targeting IL-6.|pdf=|usr=011}}
| |
− |
| |
− |
| |
− |
| |
− | {{tp|p=32519764|t=2020. Could melatonin be used in COVID-19 patients with laryngopharyngeal reflux disease?|pdf=|usr=011}}
| |
− |
| |
− | {{tp|p=32454982|t=2020. Amid COVID-19: the importance of developing an positive adverse drug reaction (ADR) and medical device incident (MDI) reporting culture for Global Health and public safety.|pdf=|usr=011}}
| |
− | {{tp|p=32542782|t=2020. SARS-CoV-2 Viral Inactivation Using Low Dose Povidone-Iodine Oral Rinse-Immediate Application for the Prosthodontic Practice.|pdf=|usr=011}}
| |
− | {{tp|p=32582350|t=2020. Herbs that might be effective for the management of COVID-19: A bioinformatics analysis on anti-tyrosine kinase property.|pdf=|usr=011}}
| |
− | {{tp|p=32600410|t=2020. Boning up: amino-bisphophonates as immunostimulants and endosomal disruptors of dendritic cell in SARS-CoV-2 infection.|pdf=|usr=011}}
| |
− |
| |
− |
| |
− |
| |
− | {{tp|p=32539990|t=2020. A minimal common outcome measure set for COVID-19 clinical research.|pdf=|usr=011}}
| |
− | {{tp|p=32402512|t=2020. A Case of Coronavirus Disease 2019 Treated With Ciclesonide.|pdf=|usr=011}}
| |
− | {{tp|p=32577056|t=2020. The Nrf2 Activator (DMF) and Covid-19: Is there a Possible Role?|pdf=|usr=011}}
| |
− | {{tp|p=32537610|t=2020. Inhibition of metalloproteinases in therapy for severe lung injury due to COVID-19.|pdf=|usr=011}}
| |
− |
| |
− |
| |
− | {{tp|p=32540604|t=2020. Iodine, a preventive and curative agent in the COVID-19 pandemic?|pdf=|usr=011}}
| |
− |
| |
− | {{tp|p=32554324|t=2020. Noradrenergic and serotonergic drugs may have opposing effects on COVID-19 cytokine storm and associated psychological effects.|pdf=|usr=011}}
| |
− | {{tp|p=32540603|t=2020. Repositioning of pentoxifylline as an immunomodulator and regulator of the renin-angiotensin system in the treatment of COVID-19.|pdf=|usr=011}}
| |
− | {{tp|p=32563970|t=2020. Deceiving SARS-CoV-2 molecular-tropism clues - A combinational contemporary strategy.|pdf=|usr=011}}
| |
− |
| |
− | {{tp|p=32554149|t=2020. Aminoglycosides can be a better choice over macrolides in COVID-19 regimen: Plausible mechanism for repurposing strategy.|pdf=|usr=011}}
| |
− |
| |
− |
| |
− |
| |
− |
| |
− | {{tp|p=32405836|t=2020. Wie ernahre ich mich am besten in Zeiten der Corona-Pandemie? : COVID-19 und Ernahrungsmedizin.|pdf=|usr=011}}
| |
− |
| |
− | {{tp|p=32545268|t=2020. Potential of Flavonoid-Inspired Phytomedicines against COVID-19.|pdf=|usr=011}}
| |
− |
| |
− |
| |
− |
| |
− | {{tp|p=32550240|t=2020. Azithromycin Should Not Be Used to Treat COVID-19.|pdf=|usr=011}}
| |
− | {{tp|p=32582329|t=2020. How Nutrition can help to fight against COVID-19 Pandemic.|pdf=|usr=011}}
| |
− | {{tp|p=32582320|t=2020. Beyond transmission: Dire need for integration of nutrition interventions in COVID-19 pandemic-response strategies in Developing Countries like Pakistan.|pdf=|usr=011}}
| |
− | {{tp|p=32582873|t=2020. Evaluation of Ultraviolet-C Light for Rapid Decontamination of Airport Security Bins in the Era of SARS-CoV-2.|pdf=|usr=011}}
| |
− |
| |
− |
| |
− |
| |
− |
| |
− | {{tp|p=32540682|t=2020. Psychotropics drugs with cationic amphiphilic properties may afford some protection against SARS-CoV-2: A mechanistic hypothesis.|pdf=|usr=011}}
| |
− |
| |
− |
| |
− |
| |
− | {{tp|p=32583654|t=2020. Baricitinib en el tratamiento de infeccion por SARS-CoV-2.|pdf=|usr=011}}
| |
− |
| |
− | {{tp|p=32548259|t=2020. Squalene-based multidrug nanoparticles for improved mitigation of uncontrolled inflammation in rodents.|pdf=|usr=011}}
| |
− | {{tp|p=32601278|t=2020. Numerical evaluation of spray position for improved nasal drug delivery.|pdf=|usr=011}}
| |
− | {{tp|p=32581288|t=2020. Far-UVC light (222 nm) efficiently and safely inactivates airborne human coronaviruses.|pdf=|usr=011}}
| |
− | {{tp|p=32576928|t=2020. DREAM-in-CDM Approach and Identification of a New Generation of Anti-inflammatory Drugs Targeting mPGES-1.|pdf=|usr=011}}
| |
− | {{tp|p=32577236|t=2020. Preventing SARS-CoV-2 infection by blocking a tissue serine protease.|pdf=|usr=011}}
| |
− | {{tp|p=32539647|t=2020. Inhaled nitric oxide treatment in spontaneously breathing COVID-19 patients.|pdf=|usr=011}}
| |
− | {{tp|p=32583289|t=2020. Statistical Evaluation of Clinical Trials Under COVID-19 Pandemic.|pdf=|usr=011}}
| |
− | {{tp|p=32557317|t=2020. New FDA Guidance on General Clinical Trial Conduct in the Era of COVID-19.|pdf=|usr=011}}
| |
− |
| |
− | {{tp|p=32563584|t=2020. Successful Treatment of Severe COVID-19 Pneumonia With Clazakizumab in a Heart Transplant Recipient: A Case Report.|pdf=|usr=011}}
| |
− |
| |
− | {{tp|p=32580895|t=2020. Targeting JAK-STAT Signaling to Control Cytokine Release Syndrome in COVID-19.|pdf=|usr=011}}
| |
− |
| |
− | {{tp|p=32551456|t=2020. Use of Spironolactone in SARS-CoV-2 ARDS Patients.|pdf=|usr=011}}
| |
− |
| |
− | {{tp|p=32595360|t=2020. Interaction of certain monoterpenoid hydrocarbons with the receptor binding domain of 2019 novel coronavirus (2019-nCoV), transmembrane serine protease 2 (TMPRSS2), cathepsin B, and cathepsin L (CatB/L) and their pharmacokinetic properties.|pdf=|usr=011}}
| |
− | {{tp|p=32595359|t=2020. Potentials of plant-based substance to inhabit and probable cure for the COVID-19.|pdf=|usr=011}}
| |
− |
| |
− |
| |
− | {{tp|p=32595355|t=2020. Virtual drug repurposing study against SARS-CoV-2 TMPRSS2 target.|pdf=|usr=011}}
| |
| | | |
− | {{tp|p=32575350|t=2020. Merit of an Ursodeoxycholic Acid Clinical Trial in COVID-19 Patients.|pdf=|usr=011}}
| + | A concept of curative retargeting has been found by cellular lockdown with kinase inhibitors from the oncologic pharmacopoiea. |
| + | This means, virus replication can be stalled to zero w/o need of develpoment of new substances. There is no need for world |
| + | vaccination anymore. The virus needs permissible cells, and most perimissible is phosphotyrosine on its own compnents. |
| + | Paper is (not yet in PubMed) : |
| | | |
| + | *'''[https://www.sciencedirect.com/science/article/pii/S1097276520305499?via%3Dihub Growth factor receptor signaling inhibition prevents SARS-CoV-2 replication at Mol Cell 2020/08/11]''' |
| + | credentials to [https://web.de/magazine/news/coronavirus/coronavirus-blockade-zellulaerer-kommunikation-forscher-stoppen-vermehrung-sars-cov-2-35045170 Marinus Brandl] who told us about it today. |
| + | based on e.g. |
| | | |
| + | {{ttp|p=32408336|t=2020. Proteomics of SARS-CoV-2-infected host cells reveals therapy targets |pdf=|usr=}} |
| | | |
| + | ======================================================================================= |
| | | |
− | {{tp|p=32565126|t=2020. Targeting the SARS-CoV-2 spike glycoprotein prefusion conformation: virtual screening and molecular dynamics simulations applied to the identification of potential fusion inhibitors.|pdf=|usr=011}}
| + | COVID19 is now a CURABLE disease !!! |
| | | |
− | {{tp|p=32573126|t=2020. Phosphodiesterase Type 5 Inhibitors and COVID-19: Are They Useful In Disease Management?|pdf=|usr=011}}
| + | ======================================================================================= |