|
|
(81 dazwischenliegende Versionen von einem Benutzer werden nicht angezeigt) |
Zeile 1: |
Zeile 1: |
− | {{pnc}} | + | {{gohome}} |
| + | {{ft|P}} |
| + | '''CHERRYPICKING STUDIES IS NOT SCIENCE |
| + | {{qt|Reviews on covid drug development}} |
| | | |
− | current items will be put into the subsections.
| |
− | subsections with contents are marked ''with content''.
| |
− | the others are pending data.
| |
| | | |
− | *[[reviews on covid drug development]] ''with content'' | + | *'''[[scouting ideas]]''' |
− | *
| + | |
| | | |
− | *[[Patients on biologicals]] | + | *'''[[PHA Biologicals]]''' |
− | *[[HMGB1, RAGE]]
| + | |
− | *[[pre-Interleukin 6]] ''with content''
| + | |
− | *[[post-Interleukin 6]]
| + | |
− | *[[pre-TNFalpha]]
| + | |
− | *[[post-TNFalpha]]
| + | |
− | *[[pre-Interleukin 17]]
| + | |
− | *[[post-Interleukin 17]]
| + | |
− | *[[pre-Interleukin 1]]
| + | |
− | *[[post-Interleukin 1]]
| + | |
− | *[[Inflammasome]]
| + | |
| | | |
− | *[[NK-kappaB]] | + | *'''[[PHA conventional pharmacology]]''' |
− | *[[STAT 3]]
| + | |
− | *[[JAK Janus Kinase]]
| + | |
− | *[[Corticosteroids]]
| + | |
− | *[[Cytokine absorbers]]
| + | |
− | *[[Target Complement system]]
| + | |
− | *[[Target Extracellular traps]]
| + | |
− | *[[Anticoagulant in covid19]]
| + | |
− | *[[Antioxidants]]
| + | |
− | *[[Stem cells]]
| + | |
− | *[[MDSC cells]]
| + | |
| | | |
| + | *'''[[PHA retargeted compounds]]''' |
| | | |
| + | *'''[[PHA antivirals by mechanism]]''' |
| | | |
− | * | + | *'''[[PHA pharmacophore by screened target]]''' |
− | *[[Hydroxychloroquine]] ''with content''
| + | |
− | *
| + | |
| | | |
− | *[[AV Remdesivir]] | + | *'''[[PHA ImmunoNutrients]] |
− | *[[AV Lopinavir]]
| + | |
− | *[[AV Ivermectin]]
| + | |
− | *[[Interferons]]
| + | |
− | *[[Vitamin D]]
| + | |
| | | |
− | *[[Statins]] | + | *'''[[PHA compl altern natural]]''' |
− | *[[Anorganic nutrients Magnesium]]
| + | |
− | *[[Anorganic nutrients Selenium]]
| + | |
− | *[[Anorganic nutrients Zinc]]
| + | |
| | | |
| + | *'''[[PHA within indications compounds]]''' |
| | | |
| + | *'''[[PHA Serum products]]''' |
| | | |
− | *[[Traditional Chinese Medicine]] | + | *'''[[PHA Vaccination]]''' |
− | *[[Natural compounds]]
| + | |
− | *[[Retargeted single compounds]]
| + | |
| | | |
− | *[[Target ACE2, Spike protein]]
| + | PHA related options: |
− | *[[Target TMPRSS2, Spike protein]]
| + | |
− | *[[Reconvalescent blood products, Passive vaccine]] ''with content''
| + | |
− | *[[Plasmapheresis]]
| + | |
| | | |
− | *[[Immunodeviation]] e.g. by adjuvants or other vaccinations | + | *[[Radiation therapy]] |
− | *[[Active vaccine]] ''with cotent'' | + | *[[Phototherapy]] |
| + | *[[Electric fields]] |
| + | *[[Treatment other concepts]] |
| | | |
| | | |
− | {{tp|p=32162456|t=2020. Rapid Identification of Potential Inhibitors of SARS-CoV-2 Main Protease by Deep Docking of 1 3 Billion Compounds |pdf=|usr=}}
| + | A concept of curative retargeting has been found by cellular lockdown with kinase inhibitors from the oncologic pharmacopoiea. |
| + | This means, virus replication can be stalled to zero w/o need of develpoment of new substances. There is no need for world |
| + | vaccination anymore. The virus needs permissible cells, and most perimissible is phosphotyrosine on its own compnents. |
| + | Paper is (not yet in PubMed) : |
| | | |
| + | *'''[https://www.sciencedirect.com/science/article/pii/S1097276520305499?via%3Dihub Growth factor receptor signaling inhibition prevents SARS-CoV-2 replication at Mol Cell 2020/08/11]''' |
| + | credentials to [https://web.de/magazine/news/coronavirus/coronavirus-blockade-zellulaerer-kommunikation-forscher-stoppen-vermehrung-sars-cov-2-35045170 Marinus Brandl] who told us about it today. |
| + | based on e.g. |
| | | |
− | '''Icatibant''' bradykinin antagonist
| + | {{ttp|p=32408336|t=2020. Proteomics of SARS-CoV-2-infected host cells reveals therapy targets |pdf=|usr=}} |
− | {{tp|p=32359101|t=2020. A hypothesized role for dysregulated bradykinin signaling in COVID-19 respiratory complications |pdf=|usr=}} | + | |
| | | |
− | '''Arbidol''' retarget influenza
| + | ======================================================================================= |
− | {{tp|p=32373347|t=2020. The anti-influenza virus drug, arbidol is an efficient inhibitor of SARS-CoV-2 in vitro |pdf=|usr=}}
| + | |
| | | |
− | '''Macrolide antibiotics'''
| + | COVID19 is now a CURABLE disease !!! |
− | {{tp|p=32249257|t=2020. Macrolide treatment for COVID-19: Will this be the way forward?|pdf=|usr=}}
| + | |
| | | |
− | '''Oleoylethanolamide'''
| + | ======================================================================================= |
− | {{tp|p=32327293|t=ä. Oleoylethanolamide, A Bioactive Lipid Amide, as A Promising Treatment Strategy for Coronavirus/COVID-19 |pdf=|usr=}}
| + | |
− | | + | |
− | '''Metronidazole''' retarget
| + | |
− | {{tp|p=32259129|t=2020. Metronidazole; a Potential Novel Addition to the COVID-19 Treatment Regimen |pdf=|usr=}}
| + | |
− | | + | |
− | '''Glutathione GSH''' antioxidant
| + | |
− | *[https://nypost.com/2020/05/09/new-york-mom-with-coronavirus-saved-by-medical-student-son/ found in a forrest gump mode]
| + | |
− | *[https://www.sciencedirect.com/science/article/pii/S2213007120301350 Efficacy of glutathione therapy in relieving dyspnea associated with COVID-19 pneumonia: A report of 2 cases]
| + | |
− | | + | |
− | '''Chlorpromazine''' retarget
| + | |
− | *[https://www.biorxiv.org/content/10.1101/2020.05.05.079608v1 paper]
| + | |
− | | + | |
− | '''Zinc''' add-on
| + | |
− | *[https://www.sciencedirect.com/science/article/pii/S0306987720306435 call for trial]
| + | |
− | | + | |
− | '''Selenium'''
| + | |
− | {{tp|p=32342979|t=ä. Association between regional selenium status and reported outcome of COVID-19 cases in China |pdf=|usr=}}
| + | |
− | | + | |
− | '''Remdesivir''' retarget
| + | |
− | *[https://gab.com/Remnant601/posts/104122987152232660 one hospital on...]
| + | |
− | {{tp|p=32283108|t=ä. Remdesivir and SARS-CoV-2: structural requirements at both nsp12 RdRp and nsp14 Exonuclease active-sites |pdf=|usr=}}
| + | |
− | {{tp|p=32020029|t=2020. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro |pdf=|usr=}}
| + | |
− | | + | |
− | '''Lauric acid''' nat. compd.
| + | |
− | *[https://www.icp.org.ph/2020/01/the-potential-of-coconut-oil-and-its-derivatives-as-effective-and-safe-antiviral-agents-against-the-novel-coronavirus-ncov-2019/ call for trial]
| + | |
− | | + | |
− | '''Nicotine''' nat. toxin
| + | |
− | *[https://www.usatoday.com/story/news/factcheck/2020/05/03/covid-19-fact-check-caution-urged-study-virus-smoking/3055378001/ france]
| + | |
− | | + | |
− | '''Niclosamide'''
| + | |
− | {{tp|p=32125140|t=ä. Broad Spectrum Antiviral Agent Niclosamide and Its Therapeutic Potential |pdf=|usr=}}
| + | |
− | | + | |
− | '''Microbiome as target'''
| + | |
− | {{tp|p=32356654|t=ä. Considering the Effects of Microbiome and Diet on SARS-CoV-2 Infection: Nanotechnology Roles |pdf=|usr=}}
| + | |
− | | + | |
− | '''ACE2 as target'''
| + | |
− | {{tp|p=32286790|t=ä. Computational Design of ACE2-Based Peptide Inhibitors of SARS-CoV-2 |pdf=|usr=}}
| + | |
− | {{tp|p=32333836|t=ä. Inhibition of SARS-CoV-2 Infections in Engineered Human Tissues Using Clinical-Grade Soluble Human ACE2 |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | '''Garlic extracts'''
| + | |
− | {{tp|p=32363255|t=ä. Investigation into SARS-CoV-2 Resistance of Compounds in Garlic Essential Oil |pdf=|usr=}}
| + | |
− | | + | |
− | '''Dipyridamole''' retarget
| + | |
− | {{tp|p=32318327|t=ä. Potential therapeutic effects of dipyridamole in the severely ill patients with COVID-19 |pdf=|usr=}}
| + | |
− | | + | |
− | '''stem cells'''
| + | |
− | {{tp|p=32257554|t=2020. Mesenchymal Stem Cell Infusion Shows Promise for Combating Coronavirus (COVID-19)- Induced Pneumonia |pdf=|usr=}}
| + | |
− | {{tp|p=32257537|t=2020. Transplantation of ACE2- Mesenchymal Stem Cells Improves the Outcome of Patients with COVID-19 Pneumonia |pdf=|usr=}}
| + | |
− | {{tp|p=32283815|t=2020. Mesenchymal Stromal Cell Secretome for Severe COVID-19 Infections: Premises for the Therapeutic Use |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | '''Ivermectin'''
| + | |
− | {{tp|p=32330482|t=ä. Ivermectin and COVID-19: a report in Antiviral Research, widespread interest, an FDA warning, two letters to the editor and the authors responses |pdf=|usr=}}
| + | |
− | | + | |
− | '''Various Leads'''
| + | |
− | *[https://theconversation.com/we-found-and-tested-47-old-drugs-that-might-treat-the-coronavirus-results-show-promising-leads-and-a-whole-new-way-to-fight-covid-19-136789 9 retargeted: ternatin4, zotatifin, plitidepsin; haloperidol, melperone, clemastine, cloperastine, pb28, progesterone]
| + | |
− | *[https://doi.org/10.1038/s41586-020-2286-9 paper in nature]
| + | |
− | {{tp|p=32251767|t=2020. Remdesivir, lopinavir, emetine, and homoharringtonine inhibit SARS-CoV-2 replication in vitro |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | '''Interferons'''
| + | |
− | {{tp|p=32275914|t=2020. Type 1 interferons as a potential treatment against COVID-19 |pdf=|usr=}}
| + | |
− | {{tp|p=32360182|t=2020. Antiviral activities of type I interferons to SARS-CoV-2 infection |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | {{tp|p=32241793|t=2020. Clinical course of COVID-19 in a series of patients with chronic arthritis treated with immunosuppressive targeted therapies |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | | + | |
− | '''Glucocorticoids'''
| + | |
− | | + | |
− | {{tp|p=32149773|t=ä. Effectiveness of glucocorticoid therapy in patients with severe coronavirus disease 2019: protocol of a randomized controlled trial |pdf=|usr=}}
| + | |
− | | + | |
− | '''CRISPR genome editing technology'''
| + | |
− | {{tp|p=32353252|t=ä. Development of CRISPR as an Antiviral Strategy to Combat SARS-CoV-2 and Influenza |pdf=|usr=}}
| + | |
− | | + | |
− | '''Virus interference'''
| + | |
− | {{tp|p=32071427|t=2020. Virus against virus: a potential treatment for 2019-nCov (SARS-CoV-2) and other RNA viruses |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | '''Antiviral agents Covid19'''
| + | |
− | {{tp|p=32231345|t=2020. Inhibition of SARS-CoV-2 (previously 2019-nCoV)infection by a highly potent pan-coronavirus fusion inhibitor targeting its spike protein that harbors a high capacity to mediate membrane fusion |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | | + | |
− | '''resilience enhancement'''
| + | |
− | {{tp|p=32229705|t=2020. Geroprotective and senoremediative strategies to reduce the comorbidity, infection rates, severity, and lethality in gerophilic and gerolavic infections |pdf=|usr=}}
| + | |
− | {{tp|p=32311498|t=ä. The impact of nutrition on COVID-19 susceptibility and long-term consequences |pdf=|usr=}}
| + | |
− | {{tp|p=32276453|t=2020. Exploring the Relevance of Senotherapeutics for the Current SARS-CoV-2 Emergency and Similar Future Global Health Threats |pdf=|usr=}}
| + | |
− | | + | |
− | '''psychoneuroimmunology'''
| + | |
− | {{tp|p=32234338|t=ä. Using psychoneuroimmunity against COVID-19 |pdf=|usr=}}
| + | |
− | | + | |
− | '''cannabinoids'''
| + | |
− | {{tp|p=32360437|t=ä. SARS-CoV2 induced respiratory distress: Can cannabinoids be added to anti-viral therapies to reduce lung inflammation?|pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | '''Complementary & Traditional chinese medicine & Ethnopharm'''
| + | |
− | {{tp|p=32245701|t=ä. Is traditional Chinese medicine useful in the treatment of COVID-19?|pdf=|usr=}}
| + | |
− | {{tp|p=32233641|t=2020. Network pharmacology-based analysis of the role of traditional Chinese herbal medicines in the treatment of COVID-19 |pdf=|usr=}}
| + | |
− | *[https://www.aa.com.tr/en/africa/madagascar-slams-who-for-not-endorsing-its-herbal-cure/1836905 madagascar herbs]
| + | |
− | {{tp|p=32229706|t=2020. COVID-19 and chronological aging: senolytics and other anti-aging drugs for the treatment or prevention of corona virus infection?|pdf=|usr=}}
| + | |
− | {{tp|p=32037389|t=2020. Clinical characteristics and therapeutic procedure for four cases with 2019 novel coronavirus pneumonia receiving combined Chinese and Western medicine treatment |pdf=|usr=}}
| + | |
− | {{tp|p=32334064|t=ä. Ayurveda and COVID-19: where psychoneuroimmunology and the meaning response meet |pdf=|usr=}}
| + | |
− | {{tp|p=32361935|t=ä. Traditional Chinese and Western Medicines Jointly Beat COVID-19 Pandemic |pdf=|usr=}}
| + | |
− | {{tp|p=32065348|t=ä. Can Chinese Medicine Be Used for Prevention of Corona Virus Disease 2019 (COVID-19)? A Review of Historical Classics, Research Evidence and Current Prevention Programs |pdf=|usr=}}
| + | |
− | {{tp|p=32308732|t=2020. Treatment efficacy analysis of traditional Chinese medicine for novel coronavirus pneumonia (COVID-19): an empirical study from Wuhan, Hubei Province, China |pdf=|usr=}}
| + | |
− | | + | |
− | '''Exercise'''
| + | |
− | {{tp|p=32311497|t=ä. The immunological case for staying active during the COVID-19 pandemic |pdf=|usr=}}
| + | |
− | | + | |
− | '''Topical agents''' opening up the world of nano...
| + | |
− | *[https://www.dailymail.co.uk/sciencetech/article-8315269/Commercial-mouthwash-prevent-COVID-19-transmission-scientists-say.html on mouth rinses]
| + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | ----
| + | |
− | | + | |
− | | + | |
− | | + | |
− | {{tp|p=32272008|t=2020. Early preemptive immunomodulators (corticosteroids) for severe pneumonia patients infected with SARS-CoV-2 |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=32272196|t=2020. Any possible role of phosphodiesterase type 5 inhibitors in the treatment of severe COVID19 infections? A lesson from urology |pdf=|usr=}}
| + | |
− | {{tp|p=32247038|t=2020. Potential effect of blood purification therapy in reducing cytokine storm as a late complication of critically ill COVID-19 |pdf=|usr=}}
| + | |
− | {{tp|p=32222466|t=2020. The use of anti-inflammatory drugs in the treatment of people with severe coronavirus disease 2019 (COVID-19): The Perspectives of clinical immunologists from China |pdf=|usr=}}
| + | |
− | {{tp|p=32360516|t=ä. The first case of COVID-19 treated with the complement C3 inhibitor AMY-101 |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=32335290|t=2020. A strategy targeting monocyte-macrophage differentiation to avoid pulmonary complications in SARS-Cov2 infection |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | {{tp|p=32266375|t=ä. Inquiring into Benefits of Independent Activation of Non-Classical Renin-Angiotensin System in the Clinical Prognosis and Reduction of COVID-19 mortality |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=32301957|t=ä. Weak Induction of Interferon Expression by SARS-CoV-2 Supports Clinical Trials of Interferon Lambda to Treat Early COVID-19 |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=32344167|t=ä. Umifenovir treatment is not associated with improved outcomes in patients with coronavirus disease 2019: A retrospective study |pdf=|usr=}}
| + | |
− | {{tp|p=32305181|t=ä. ESPEN expert statements and practical guidance for nutritional management of individuals with SARS-CoV-2 infection |pdf=|usr=}}
| + | |
− | {{tp|p=32360083|t=ä. Modulation of Hb-O2 affinity to improve hypoxemia in COVID-19 patients |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=32277367|t=ä. Rheumatologists? perspective on coronavirus disease 19 (COVID-19) and potential therapeutic targets |pdf=|usr=}}
| + | |
− | {{tp|p=32373721|t=2020. Low dose lung radiotherapy for COVID-19 pneumonia The rationale for a cost-effective anti-inflammatory treatment |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | {{tp|p=32264963|t=2020. A new clinical trial to test high-dose vitamin C in patients with COVID-19 |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | | + | |
− | {{tp|p=32241301|t=2020. A novel treatment approach to the novel coronavirus: an argument for the use of therapeutic plasma exchange for fulminant COVID-19 |pdf=|usr=}}
| + | |
− | {{tp|p=32226695|t=ä. Acetazolamide, Nifedipine and Phosphodiesterase Inhibitors: Rationale for Their Utilization as Adjunctive Countermeasures in the Treatment of Coronavirus Disease 2019 (COVID-19) |pdf=|usr=}}
| + | |
− | {{tp|p=32318324|t=ä. Depriving Iron Supply to the Virus Represents a Promising Adjuvant Therapeutic Against Viral Survival |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | {{tp|p=32360420|t=ä. Cytokine storm intervention in the early stages of COVID-19 pneumonia |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | | + | |
− | {{tp|p=32335366|t=2020. Can dapagliflozin have a protective effect against COVID-19 infection? A hypothesis |pdf=|usr=}}
| + | |
− | {{tp|p=32333972|t=ä. Letter to the Editor in response to the article ?COVID-19 and diabetes: Can DPP4 inhibition play a role?? |pdf=|usr=}}
| + | |
− | {{tp|p=32333966|t=2020. COVID-19 and diabetes: Is this association driven by the DPP4 receptor? Potential clinical and therapeutic implications |pdf=|usr=}}
| + | |
− | {{tp|p=32333969|t=ä. Response to COVID -19 and Diabetes: Can DPP4 Inhibition Play a Role? ? GLP-1 Might Play One Too |pdf=|usr=}}
| + | |
− | {{tp|p=32283128|t=ä. Should anti-diabetic medications be reconsidered amid COVID-19 pandemic?|pdf=|usr=}} ''on ace2 via adam17, nfkb via dpp4''
| + | |
− | | + | |
− | | + | |
− | | + | |
− | {{tp|p=32378648|t=2020. Rapid review for the anti-coronavirus effect of remdesivir |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | {{tp|p=32325124|t=ä. Vaporization, bioactive formulations and a marine natural product: different perspectives on antivirals |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | {{tp|p=32249203|t=ä. Microneedle array delivered recombinant coronavirus vaccines: Immunogenicity and rapid translational development |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=32379923|t=2020. Is BCG vaccination causally related to reduced COVID-19 mortality?|pdf=|usr=}}
| + | |
− | {{tp|p=32333818|t=2020. COVID-19: lambda interferon against viral load and hyperinflammation |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=32228222|t=2020. Renin-angiotensin system inhibitors improve the clinical outcomes of COVID-19 patients with hypertension |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=C7118608|t=ä. A Promising Anti-Cytokine-Storm Targeted Therapy for COVID-19: The Artificial-Liver Blood-Purification System |pdf=|usr=}}
| + | |
− | {{tp|p=32065055|t=2020. Potent binding of 2019 novel coronavirus spike protein by a SARS coronavirus-specific human monoclonal antibody |pdf=|usr=}}
| + | |
− | {{tp|p=32346491|t=ä. Experimental Treatment with Favipiravir for COVID-19: An Open-Label Control Study |pdf=|usr=}}
| + | |
− | {{tp|p=32292627|t=ä. Clinical study of mesenchymal stem cell treating acute respiratory distress syndrome induced by epidemic Influenza A (H7N9) infection, a hint for COVID-19 treatment |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | {{tp|p=32347925|t=ä. Statin therapy in COVID-19 infection |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=32337546|t=ä. Colchicine as a potent anti-inflammatory treatment in COVID-19: can we teach an old dog new tricks?|pdf=|usr=}}
| + | |
− | {{tp|p=32282032|t=ä. Neprilysin inhibitor?angiotensin II receptor blocker combination (sacubitril/valsartan): rationale for adoption in SARS-CoV-2 patients |pdf=|usr=}}
| + | |
− | {{tp|p=32285293|t=ä. Searching therapeutic strategy of new coronavirus pneumonia from angiotensin-converting enzyme 2: the target of COVID-19 and SARS-CoV |pdf=|usr=}}
| + | |
− | {{tp|p=C7129866|t=ä. Highlights of traditional Chinese medicine frontline expert advice in the China national guideline for COVID-19 |pdf=|usr=}}
| + | |
− | {{tp|p=32341100|t=2020. Inhaled corticosteroids and COVID-19: a systematic review and clinical perspective |pdf=|usr=}}
| + | |
− | {{tp|p=32265310|t=ä. Current Status of Cell-Based Therapies for Respiratory Virus Infections: Applicability to COVID-19 |pdf=|usr=}}
| + | |
− | {{tp|p=32271462|t=2020. Inositol and pulmonary function Could myo-inositol treatment downregulate inflammation and cytokine release syndrome in SARS-CoV-2?|pdf=|usr=}}
| + | |
− | {{tp|p=32271456|t=2020. Clinical efficacy of lopinavir/ritonavir in the treatment of Coronavirus disease 2019 |pdf=|usr=}}
| + | |
− | {{tp|p=32271454|t=2020. Utilizing integrating network pharmacological approaches to investigate the potential mechanism of Ma Xing Shi Gan Decoction in treating COVID-19 |pdf=|usr=}}
| + | |
− | {{tp|p=32329881|t=2020. Eculizumab treatment in patients with COVID-19: preliminary results from real life ASL Napoli 2 Nord experience |pdf=|usr=}}
| + | |
− | {{tp|p=32329879|t=2020. (Naturlal products: )An alternative approach to minimize the risk of coronavirus (Covid-19) and similar infections |pdf=|usr=}}
| + | |
− | {{tp|p=32327396|t=ä. COVID-19 and Bacillus Calmette-Guerin: What is the Link?|pdf=|usr=}}
| + | |
− | {{tp|p=32279655|t=2020. Can Hepatitis A Vaccine Provide Protection Against COVID-19?|pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=32329380|t=2020. Adipose-derived stromal stem cells (ASCs) as a new regenerative immediate therapy combating coronavirus (COVID-19)-induced pneumonia |pdf=|usr=}}
| + | |
− | {{tp|p=32312129|t=2020. The role of additive manufacturing and antimicrobial polymers in the COVID-19 pandemic |pdf=|usr=}}
| + | |
− | {{tp|p=32117569|t=2020. Therapeutic strategies in an outbreak scenario to treat the novel coronavirus originating in Wuhan, China |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | | + | |
− | {{tp|p=32374074|t=2020. Potential anti-SARS-CoV-2 drug candidates identified through virtual screening of the ChEMBL database for compounds that target the main coronavirus protease |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=32251729|t=ä. The Greek study in the effects of colchicine in COvid-19 complications prevention (GRECCO-19 study): Rationale and study design |pdf=|usr=}}
| + | |
− | {{tp|p=32363144|t=ä. Inpatient use of mobile continuous telemetry for COVID-19 patients treated with hydroxychloroquine and azithromycin |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=32247692|t=ä. Faecal-oral transmission of SARS-COV-2: practical implications |pdf=|usr=}}
| + | |
− | {{tp|p=32367287|t=ä. New evidence of SARS-CoV-2 transmission through the ocular surface |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | {{tp|p=32251365|t=ä. Considering mutational meltdown as a potential SARS-CoV-2 treatment strategy |pdf=|usr=}}
| + | |
− | {{tp|p=32375153|t=2020. HMGB1: A Possible Crucial Therapeutic Target for COVID-19?|pdf=|usr=}}
| + | |
− | {{tp|p=32186952|t=2020. COVID-19, an emerging coronavirus infection: advances and prospects in designing and developing vaccines, immunotherapeutics, and therapeutics |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | {{tp|p=32362644|t=2020. Lopinavir/ritonavir combination therapy amongst symptomatic coronavirus disease 2019 patients in India: Protocol for restricted public health emergency use |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | {{tp|p=32366728|t=2020. Medical Education During the COVID-19 Pandemic: A Single Institution Experience |pdf=|usr=}}
| + | |
− | {{tp|p=32366726|t=2020. Management of Asthma in Children during COVID-19 Pandemic |pdf=|usr=}}
| + | |
− | {{tp|p=32366725|t=2020. COVID -19 Pandemic: The Challenges for Pediatric Oncology |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=32358227|t=2020. Demystifying BCG Vaccine and COVID-19 Relationship |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=32238614|t=2020. Measles Immunization: Worth Considering Containment Strategy for SARS-CoV-2 Global Outbreak |pdf=|usr=}}
| + | |
− | {{tp|p=32321620|t=ä. Corticosteroid use for 2019-nCoV infection: A double-edged sword |pdf=|usr=}}
| + | |
− | {{tp|p=32341599|t=2020. Is Immuno-modulation the Key to COVID-19 Pandemic?|pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | {{tp|p=32328406|t=ä. Vaccines for SARS-CoV-2: Lessons from Other Coronavirus Strains |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | {{tp|p=32342098|t=ä. Case Report of a SARS-CoV-2 Infection in a Patient With Ulcerative Colitis on Tofacitinib |pdf=|usr=}}
| + | |
− | {{tp|p=32372149|t=ä. SARS-CoV-2-mediated inflammatory response in lungs: should we look at RAGE?|pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=32272396|t=ä. The Possible of Immunotherapy for COVID-19: a Systematic Review |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | {{tp|p=32234466|t=ä. Coronavirus disease 2019 (COVID-19): current status and future perspectives |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | {{tp|p=32259575|t=ä. BARICITINIB - A JANUASE KINASE INHIBITOR - NOT AN IDEAL OPTION FOR MANAGEMENT OF COVID 19 |pdf=|usr=}}
| + | |
− | {{tp|p=32361028|t=ä. ?Amantadine disrupts lysosomal gene expression; a hypothesis for COVID19 treatment ? |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=32251731|t=ä. Structural and molecular modelling studies reveal a new mechanism of action of chloroquine and hydroxychloroquine against SARS-CoV-2 infection |pdf=|usr=}}
| + | |
− | {{tp|p=32360231|t=ä. Arbidol: A potential antiviral drug for the treatment of SARS-CoV-2 by blocking the trimerization of viral spike glycoprotein ?|pdf=|usr=}}
| + | |
− | {{tp|p=32335281|t=ä. Pharmacological perspective: glycyrrhizin may be an efficacious therapeutic agent for COVID-19 |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | {{tp|p=32283177|t=ä. Coronavirus (COVID-19), First Indication of Efficacy of Gene-Eden-VIR/Novirin in SARS-CoV-2 Infections |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=32179150|t=ä. Teicoplanin: an alternative drug for the treatment of coronavirus COVID-19?|pdf=|usr=}}
| + | |
− | {{tp|p=32147516|t=ä. Arguments in favour of remdesivir for treating SARS-CoV-2 infections |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=32226290|t=2020. Targeting the Endocytic Pathway and Autophagy Process as a Novel Therapeutic Strategy in COVID-19 |pdf=|usr=}}
| + | |
− | {{tp|p=32226288|t=2020. Traditional Chinese Medicine in the Treatment of Patients Infected with 2019-New Coronavirus (SARS-CoV-2): A Review and Perspective |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=32300868|t=ä. Balneotherapy and human immune function in the era of COVID-19 |pdf=|usr=}}
| + | |
− | {{tp|p=32321655|t=ä. An anti-oxidative therapy for ameliorating cardiac injuries of critically ill COVID-19-infected patients |pdf=|usr=}}
| + | |
− | {{tp|p=32251768|t=2020. The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro |pdf=|usr=}}
| + | |
− | | + | |
− | *[https://www.infowars.com/experts-suggest-90-million-oxford-university-coronavirus-vaccine-doesnt-work/ Oxford vaccine failed in monkeys]
| + | |
− | {{tp|p=32305009|t=ä. Investigating hypothiocyanite against SARS-CoV-2 |pdf=|usr=}}
| + | |
− | {{tp|p=32173576|t=2020. Patients of COVID-19 may benefit from sustained Lopinavir-combined regimen and the increase of Eosinophil may predict the outcome of COVID-19 progression |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=32354030|t=2020. Functional Role of Dietary Intervention to Improve the Outcome of COVID-19: A Hypothesis of Work |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=32353978|t=2020. Structural and Evolutionary Analysis Indicate That the SARS-CoV-2 Mpro Is a Challenging Target for Small-Molecule Inhibitor Design |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=32368489|t=2020. The pathogenesis and alternative treatment of SARS-CoV2 |pdf=|usr=}}
| + | |
− | {{tp|p=32289016|t=2020. Herbal medicine and pattern identification for treating COVID-19: a rapid review of guidelines |pdf=|usr=}}
| + | |
− | {{tp|p=32125455|t=ä. Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target |pdf=|usr=}}
| + | |
− | {{tp|p=32347443|t=ä. Camostat mesilate therapy for COVID-19 |pdf=|usr=}}
| + | |
− | {{tp|p=32333086|t=ä. Remdesivir bei Patienten mit schwerer COVID-19 |pdf=|usr=}}
| + | |
− | {{tp|p=32378817|t=2020. Inhaled Nebulized Sodium Pyruvate Use in COVID-19 Patients |pdf=|usr=}}
| + | |
− | *[https://www.nature.com/articles/d41573-020-00073-5 Nature: The COVID-19 vaccine development landscape]
| + | |
− | {{tp|p=32283237|t=ä. Hydroxychloroquine and ivermectin: a synergistic combination for COVID-19 chemoprophylaxis and/or treatment?|pdf=|usr=}}
| + | |
− | {{tp|p=32278797|t=ä. The use of Janus kinase inhibitors in the time of SARS-CoV-2 |pdf=|usr=}}
| + | |
− | {{tp|p=32339701|t=ä. Potential role of Janus kinase inhibitors in COVID-19 |pdf=|usr=}}
| + | |
− | {{tp|p=32344070|t=ä. Calm before the storm: understanding the role of JAK inhibitors in COVID-19 |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=32283123|t=ä. Considerations for Drug Interactions on QTc in Exploratory COVID-19 (Coronavirus Disease 2019) Treatment |pdf=|usr=}}
| + | |
− | {{tp|p=32336674|t=ä. COVID-19 Emergency Responders in FDA?s Center for Drug Evaluation and Research |pdf=|usr=}}
| + | |
− | {{tp|p=32361744|t=ä. Development and validation of a UHPLC-MS/MS method for quantification of the prodrug remdesivir and its metabolite GS-441524: a tool for clinical pharmacokinetics of SARS-CoV-2/COVID-19 and Ebola virus disease |pdf=|usr=}}
| + | |
− | {{tp|p=32196083|t=ä. COVID-19: a recommendation to examine the effect of hydroxychloroquine in preventing infection and progression |pdf=|usr=}}
| + | |
− | {{tp|p=32317220|t=ä. The anti-viral facet of anti-rheumatic drugs: Lessons from COVID-19 |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=32284326|t=2020. Remdesivir is a direct-acting antiviral that inhibits RNA-dependent RNA polymerase from severe acute respiratory syndrome coronavirus 2 with high potency |pdf=|usr=}}
| + | |
− | {{tp|p=32094225|t=2020. The antiviral compound remdesivir potently inhibits RNA-dependent RNA polymerase from Middle East respiratory syndrome coronavirus |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=32306862|t=2020. Drug repurposing for coronavirus (COVID-19): in silico screening of known drugs against coronavirus 3CL hydrolase and protease enzymes |pdf=|usr=}}
| + | |
− | {{tp|p=32266873|t=2020. Targeting SARS-CoV-2: a systematic drug repurposing approach to identify promising inhibitors against 3C-like proteinase and 2?-O-ribose methyltransferase |pdf=|usr=}}
| + | |
− | {{tp|p=32238078|t=2020. In-silico approaches to detect inhibitors of the human severe acute respiratory syndrome coronavirus envelope protein ion channel |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=32374474|t=2020. Natural antiviral compound silvestrol modulates human monocyte-derived macrophages and dendritic cells |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | {{tp|p=32352407|t=2020. Preventing cytokine storm syndrome in COVID-19 using alpha-1 adrenergic receptor antagonists |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=32326602|t=2020. Pharmacological Therapeutics Targeting RNA-Dependent RNA Polymerase, Proteinase and Spike Protein: From Mechanistic Studies to Clinical Trials for COVID-19 |pdf=|usr=}}
| + | |
− | {{tp|p=32326426|t=2020. COVID-19: A Recommendation to Examine the Effect of Mouthrinses with beta-Cyclodextrin Combined with Citrox in Preventing Infection and Progression |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | {{tp|p=32289152|t=2020. COVID-19 and emerging viral infections: The case for interferon lambda |pdf=|usr=}}
| + | |
− | {{tp|p=32302401|t=2020. Targeting potential drivers of COVID-19: Neutrophil extracellular traps |pdf=|usr=}}
| + | |
− | {{tp|p=32359878|t=2020. Application of plasma exchange in association with higher dose CVVH in Cytokine Storm Complicating COVID-19 |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=32171450|t=2020. Identification of potential cross-protective epitope between a new type of coronavirus (2019-nCoV) and severe acute respiratory syndrome virus |pdf=|usr=}}
| + | |
− | {{tp|p=32173287|t=ä. Potential inhibitors against 2019-nCoV coronavirus M protease from clinically approved medicines |pdf=|usr=}}
| + | |
− | {{tp|p=32373322|t=ä. Fighting COVID-19 with water |pdf=|usr=}}''dehydration of mucous glycans''
| + | |
− | | + | |
− | {{tp|p=32171872|t=ä. Arbidol combined with LPV/r versus LPV/r alone against Corona Virus Disease 2019: A retrospective cohort study |pdf=|usr=}}
| + | |
− | {{tp|p=32333918|t=ä. Baricitinib therapy in COVID-19: A pilot study on safety and clinical impact |pdf=|usr=}}
| + | |
− | {{tp|p=32283153|t=ä. Low-dose corticosteroid therapy does not delay viral clearance in patients with COVID-1 |pdf=|usr=}}
| + | |
− | {{tp|p=32362440|t=ä. Therapeutic potential of ciclesonide inahalation for COVID-19 pneumonia: Report of three cases |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=32293807|t=2020. Systematic review of the efficacy and safety of antiretroviral drugs against SARS, MERS or COVID?19: initial assessment |pdf=|usr=}}
| + | |
− | {{tp|p=32307268|t=2020. Active constituents and mechanisms of Respiratory Detox Shot, a traditional Chinese medicine prescription, for COVID-19 control and prevention: Network-molecular docking-LC?MSE analysis |pdf=|usr=}}
| + | |
− | {{tp|p=32122812|t=2020. Traditional Chinese medicine is a resource for drug discovery against 2019 novel coronavirus (SARS-CoV-2) |pdf=|usr=}}
| + | |
− | {{tp|p=32113846|t=ä. In silico screening of Chinese herbal medicines with the potential to directly inhibit 2019 novel coronavirus |pdf=|usr=}}
| + | |
− | {{tp|p=32080993|t=2020. The Author s Response: Case of the Index Patient Who Caused Tertiary Transmission of Coronavirus Disease 2019 in Korea: the Application of Lopinavir/Ritonavir for the Treatment of COVID-19 Pneumonia Monitored by Quantitative RT-PCR |pdf=|usr=}}
| + | |
− | {{tp|p=32080992|t=2020. Letter to the Editor: Case of the Index Patient Who Caused Tertiary Transmission of Coronavirus Disease 2019 in Korea: the Application of Lopinavir/Ritonavir for the Treatment of COVID-19 Pneumonia Monitored by Quantitative RT-PCR |pdf=|usr=}}
| + | |
− | {{tp|p=32056407|t=2020. Case of the Index Patient Who Caused Tertiary Transmission of Coronavirus Disease 2019 in Korea: the Application of Lopinavir/Ritonavir for the Treatment of COVID-19 Pneumonia Monitored by Quantitative RT-PCR |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=32356252|t=ä. COVID-19: Therapeutics and Their Toxicities |pdf=|usr=}}
| + | |
− | {{tp|p=32356251|t=ä. Medical Toxicology and COVID-19: Our Role in a Pandemic |pdf=|usr=}}
| + | |
− | {{tp|p=32052466|t=2020. Potential interventions for novel coronavirus in China: A systematic review |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | {{ttp|p=32205092|t=ä. TH17 responses in cytokine storm of COVID-19: An emerging target of JAK2 inhibitor Fedratinib |pdf=|usr=}}
| + | |
− | *[https://www.thepharmaletter.com/article/ivermectin-can-kill-covid-19-within-48-hours-monash-university-study-finds on ivermectin]
| + | |
− | | + | |
− | | + | |
− | {{tp|p=32331982|t=ä. Lopinavir/ritonavir did not shorten the duration of SARS CoV-2 shedding in patients with mild pneumonia in Taiwan |pdf=|usr=}}
| + | |
− | {{tp|p=32236561|t=ä. Combating COVID-19 with Chloroquine |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=32296570|t=ä. Structural basis of SARS-CoV-2 3CLpro and anti-COVID-19 drug discovery from medicinal plants? |pdf=|usr=}}
| + | |
− | {{tp|p=32346490|t=ä. Structural elucidation of SARS-CoV-2 vital proteins: Computational methods reveal potential drug candidates against main protease, Nsp12 polymerase and Nsp13 helicase |pdf=|usr=}}
| + | |
− | {{tp|p=32324533|t=2020. Prevention and therapy of COVID-19 via exogenous estrogen treatment for both male and female patients |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=32291198|t=2020. Impact of Nutrition and Diet on COVID-19 Infection and Implications for Kidney Health and Kidney Disease Management |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=32353597|t=ä. SARS-COV2 INFECTION AND LUNG CANCER PATIENTS: the potential role of IL17 target therapy |pdf=|usr=}}
| + | |
− | {{tp|p=32281481|t=2020. Challenges and cares to promote rational use of chloroquine and hydroxychloroquine in the management of coronavirus disease 2019 (COVID-19) pandemic: a timely review |pdf=|usr=}}
| + | |
− | {{tp|p=32370758|t=2020. SARS-CoV-2 RNA polymerase as target for antiviral therapy |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=32313848|t=ä. Precision medicine in COVID-19: IL-1 beta a potential target |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | | + | |
− | {{tp|p=32321635|t=2020. Old and new antirheumatic drugs for the treatment of COVID-19 |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=32317113|t=2020. COVID-19 therapeutic options for patients with kidney disease |pdf=|usr=}}
| + | |
− | {{tp|p=32354636|t=ä. Blockade of SARS-CoV-2 infection by recombinant soluble ACE2 |pdf=|usr=}}
| + | |
− | {{tp|p=32367812|t=2020. Fyrsta meethfereth meeth tocilizumab vieth COVID-19 herlendis - sjukratilfelli|pdf=|usr=}}
| + | |
− | {{tp|p=32365215|t=2020. Behandling med 4-aminokinoliner vid covid-19 kan ge allvarliga biverkningar |pdf=|usr=}}
| + | |
− | {{tp|p=32278362|t=2020. Trials of anti-tumour necrosis factor therapy for COVID-19 are urgently needed |pdf=|usr=}}
| + | |
− | {{tp|p=32122468|t=2020. On the use of corticosteroids for 2019-nCoV pneumonia |pdf=|usr=}}
| + | |
− | {{tp|p=32035018|t=2020. Reducing mortality from 2019-nCoV: host-directed therapies should be an option |pdf=|usr=}}
| + | |
− | {{tp|p=32043983|t=2020. Clinical evidence does not support corticosteroid treatment for 2019-nCoV lung injury |pdf=|usr=}}
| + | |
− | {{tp|p=32032529|t=2020. Baricitinib as potential treatment for 2019-nCoV acute respiratory disease |pdf=|usr=}}
| + | |
− | {{tp|p=32220278|t=2020. Immunosuppression for hyperinflammation in COVID-19: a double-edged sword?|pdf=|usr=}}
| + | |
− | {{tp|p=32353328|t=2020. What policy makers need to know about COVID-19 protective immunity |pdf=|usr=}}
| + | |
− | {{tp|p=32305088|t=2020. Flooded by the torrent: the COVID-19 drug pipeline |pdf=|usr=}}
| + | |
− | {{tp|p=32278373|t=2020. Regulators split on antimalarials for COVID-19 |pdf=|usr=}}
| + | |
− | {{tp|p=32339473|t=ä. Probiotics and COVID-19: one size does not fit all |pdf=|usr=}}
| + | |
− | {{tp|p=32199468|t=ä. Use of antiviral drugs to reduce COVID-19 transmission |pdf=|usr=}}
| + | |
− | {{tp|p=32278361|t=ä. Attention should be paid to venous thromboembolism prophylaxis in the management of COVID-19 |pdf=|usr=}}
| + | |