|
|
(30 dazwischenliegende Versionen von einem Benutzer werden nicht angezeigt) |
Zeile 1: |
Zeile 1: |
− | {{pnc}} | + | {{gohome}} |
| + | {{ft|P}} |
| + | '''CHERRYPICKING STUDIES IS NOT SCIENCE |
| + | {{qt|Reviews on covid drug development}} |
| | | |
− | current items will be put into the subsections.
| |
| | | |
− | *[[reviews on covid drug development]] | + | *'''[[scouting ideas]]''' |
− | *[[scouting ideas]]
| + | |
| | | |
− | *[[Patients on biologicals]] | + | *'''[[PHA Biologicals]]''' |
− | *[[HMGB1, RAGE]]
| + | |
− | *[[pre-Interleukin 6]]
| + | |
− | *[[post-Interleukin 6]]
| + | |
− | *[[pre-TNFalpha]]
| + | |
− | *[[post-TNFalpha]]
| + | |
− | *[[pre-Interleukin 17]]
| + | |
− | *[[post-Interleukin 17]]
| + | |
− | *[[pre-Interleukin 1]]
| + | |
− | *[[post-Interleukin 1]]
| + | |
− | *[[Inflammasome]] ''colchicine''
| + | |
− | *[[Methotrexate]]
| + | |
− | *[[other anti-inflammatory]]
| + | |
− | *[[NK-kappaB]]
| + | |
− | *[[STAT 3]]
| + | |
− | *[[JAK Janus Kinase]]
| + | |
− | *[[Corticosteroids]]
| + | |
− | *[[Cytokine absorbers]]
| + | |
− | *[[Target Complement system]]
| + | |
− | *[[Target Extracellular traps]]
| + | |
− | *[[TGF beta]]
| + | |
− | *[[Anticoagulant in covid19]]
| + | |
− | *[[Antioxidants]]
| + | |
− | *[[Stem cells]]
| + | |
− | *[[MDSC cells]]
| + | |
− | *[[Interferons]]
| + | |
| | | |
| + | *'''[[PHA conventional pharmacology]]''' |
| | | |
− | *[[other single compounds]] | + | *'''[[PHA retargeted compounds]]''' |
− | *[[Retargeted single compounds]]
| + | |
− | *[[Hydroxychloroquine]]
| + | |
− | *
| + | |
− | *[[Target ACE2, Spike protein]]
| + | |
− | *[[Target TMPRSS2, Spike protein]] ''any other covid targed herein''
| + | |
− | *[[other antiviral compounds]]
| + | |
− | *[[AV Remdesivir]]
| + | |
− | *[[AV Lopinavir]]
| + | |
− | *[[AV Ivermectin]]
| + | |
− | *[[AV Arabidol]]
| + | |
− | *[[AV Favipiravir]]
| + | |
| | | |
| + | *'''[[PHA antivirals by mechanism]]''' |
| | | |
| + | *'''[[PHA pharmacophore by screened target]]''' |
| | | |
− | *[[Vitamin D]] | + | *'''[[PHA ImmunoNutrients]] |
− | *[[Anorganic nutrients Magnesium]]
| + | |
− | *[[Anorganic nutrients Selenium]]
| + | |
− | *[[Anorganic nutrients Zinc]]
| + | |
− | *[[Nutrition, general]]
| + | |
− | *[[Exercise, Vibration]]
| + | |
| | | |
| + | *'''[[PHA compl altern natural]]''' |
| | | |
− | *[[Traditional Chinese Medicine]] | + | *'''[[PHA within indications compounds]]''' |
− | *[[Natural compounds]]
| + | |
| | | |
− | *[[Statins]] | + | *'''[[PHA Serum products]]''' |
− | *[[Antidiabetic compounds, any]]
| + | |
− | *[[RSP - On RAS drugs]]
| + | |
| | | |
− | *[[Reconvalescent blood products, Passive vaccine]] | + | *'''[[PHA Vaccination]]''' |
− | *[[Plasmapheresis]]
| + | |
| + | PHA related options: |
| | | |
− | *[[Immunodeviation]] e.g. by adjuvants or other vaccinations
| |
| *[[Radiation therapy]] | | *[[Radiation therapy]] |
| *[[Phototherapy]] | | *[[Phototherapy]] |
− | *[[Active vaccine]] | + | *[[Electric fields]] |
− | | + | *[[Treatment other concepts]] |
− | ===-rest-===
| + | |
− | {{tp|p=32458400|t=2020. Implications for Neuromodulation Therapy to Control Inflammation and Related Organ Dysfunction in COVID-19.|pdf=|usr=008}}
| + | |
− | {{tp|p=32401611|t=2020. The pulmonary-proteoliposome as a new therapeutic approach for Coronaviruses.|pdf=|usr=008}}
| + | |
− | {{tp|p=32413736|t=2020. Towards treatment planning of COVID-19: Rationale and hypothesis for the use of multiple immunosuppressive agents: Anti-antibodies, immunoglobulins, and corticosteroids.|pdf=|usr=008}}
| + | |
− | {{tp|p=32534188|t=2020. Severe Acute Respiratory Syndrome Coronavirus -2 (SARS-CoV-2): A global pandemic and treatments strategies.|pdf=|usr=008}}
| + | |
− | {{tp|p=32531935|t=2020. Chronic Inflammation in the Context of Everyday Life: Dietary Changes as Mitigating Factors.|pdf=|usr=008}}
| + | |
− | {{tp|p=32384202|t=2020. Home-based training strategy to maintain muscle function in older adults with diabetes during COVID-19 confinement.|pdf=|usr=008}}
| + | |
− | {{tp|p=32315803|t=2020. Preliminary therapeutic drug monitoring data of beta-lactams in critically ill patients with SARS-CoV-2 infection.|pdf=|usr=008}}
| + | |
− | {{tp|p=32519894|t=2020. Heparin as a Therapy for COVID-19: Current Evidence and Future Possibilities.|pdf=|usr=008}}
| + | |
− | {{tp|p=32345532|t=2020. Response to: Bioactive Lipids and Coronavirus (COVID-19)-further Discussion.|pdf=|usr=008}}
| + | |
− | {{tp|p=32399093|t=2020. Lipid-lowering therapy and renin-angiotensin-aldosterone system inhibitors in the era of the COVID-19 pandemic.|pdf=|usr=008}}
| + | |
− | {{tp|p=32532623|t=2020. Fighting COVID-19: A quick review of diagnoses, therapies, and vaccines.|pdf=|usr=008}}
| + | |
− | {{tp|p=32401215|t=2020. Telehealth Home Support During COVID-19 Confinement for Community-Dwelling Older Adults With Mild Cognitive Impairment or Mild Dementia: Survey Study.|pdf=|usr=008}}
| + | |
− | {{tp|p=32468385|t=2020. Musings on the current state of COVID-19 modeling and reporting.|pdf=|usr=008}}
| + | |
− | {{tp|p=32523144|t=2020. Protocolo para la prevencion de arritmias ventriculares debido al tratamiento en pacientes con COVID-19.|pdf=|usr=008}}
| + | |
− | {{tp|p=32516380|t=2020. Covid-19's Impact on Podiatry in Chicago's Largest Public Hospital.|pdf=|usr=008}}
| + | |
− | {{tp|p=32390307|t=2020. Practical tips for using masks in the COVID-19 pandemic.|pdf=|usr=008}}
| + | |
− | {{tp|p=32358890|t=2020. Cutaneous side-effects of the potential COVID-19 drugs.|pdf=|usr=008}}
| + | |
− | {{tp|p=32475694|t=2020. Reflexions autour d'une evolution favorable d'une COVID-19 chez un patient presentant une schizophrenie resistante et sous une association clozapine et paliperidone palmitate.|pdf=|usr=008}}
| + | |
− | {{tp|p=32406749|t=2020. Oncology clinical trials in the time of COVID-19: how a pandemic can revolutionize patients' care.|pdf=|usr=008}}
| + | |
− | {{tp|p=32535509|t=2020. COVID-19, interferons, and depression: A commentary.|pdf=|usr=008}}
| + | |
− | {{tp|p=32496248|t=2020. Effectiveness of preventive measures against COVID-19: A systematic review of In Silico modeling studies in indian context.|pdf=|usr=007}}
| + | |
− | {{tp|p=32496246|t=2020. Impact of nonpharmacological interventions on COVID-19 transmission dynamics in India.|pdf=|usr=007}}
| + | |
− | {{tp|p=32429572|t=2020. The Role of Lipid Metabolism in COVID-19 Virus Infection and as a Drug Target.|pdf=|usr=007}}
| + | |
− | {{tp|p=32408699|t=2020. Essential Oils as Antiviral Agents. Potential of Essential Oils to Treat SARS-CoV-2 Infection: An In-Silico Investigation.|pdf=|usr=007}}
| + | |
− | {{tp|p=32457038|t=2020. Potential COVID-19 therapeutics from a rare disease: Weaponizing lipid dysregulation to combat viral infectivity.|pdf=|usr=007}}
| + | |
− | {{tp|p=32423974|t=2020. COVID-19 and Rheumatology patients on immunomodulatory therapy - can we extrapolate data from previous viral pandemics?|pdf=|usr=007}}
| + | |
− | {{tp|p=32475104|t=2020. Coronavirus Disease 2019 Presenting as Conjunctivitis.|pdf=|usr=007}}
| + | |
− | {{tp|p=32418757|t=2020. Pancreatic cancer: Does a short course of carbon ion radiotherapy worth during COVID-19 outbreak?|pdf=|usr=007}}
| + | |
− | {{tp|p=32505040|t=2020. The end of 'cordon sanitaire' in Wuhan: the role of non-pharmaceutical interventions against COVID-19.|pdf=|usr=007}}
| + | |
− | {{tp|p=32472939|t=2020. Assessing the impact of non-pharmaceutical interventions on SARS-CoV-2 transmission in Switzerland.|pdf=|usr=007}}
| + | |
− | {{tp|p=32491981|t=2020. Nonpharmaceutical Measures for Pandemic Influenza in Nonhealthcare Settings-International Travel-Related Measures.|pdf=|usr=007}}
| + | |
− | {{tp|p=32487283|t=2020. Effect of Nonpharmaceutical Interventions on Transmission of Severe Acute Respiratory Syndrome Coronavirus 2, South Korea, 2020.|pdf=|usr=007}}
| + | |
− | {{tp|p=32460209|t=2020. The effect of potential therapeutic agents on QT interval in patients with COVID-19 Infection: The importance of close monitoring and correction of electrolytes.|pdf=|usr=007}}
| + | |
− | {{tp|p=32487990|t=2020. Modeling mitigation of influenza epidemics by baloxavir.|pdf=|usr=007}}
| + | |
− | {{tp|p=32512579|t=2020. Estimating the effects of non-pharmaceutical interventions on COVID-19 in Europe.|pdf=|usr=007}}
| + | |
− | {{tp|p=32116200|t=2020. COVID-19: Perspectives on the Potential Novel Global Threat.|pdf=|usr=007}}
| + | |
− | {{tp|p=32463459|t=2020. Prescription Fill Patterns for Commonly Used Drugs During the COVID-19 Pandemic in the United States.|pdf=|usr=007}}
| + | |
− | {{tp|p=32498081|t=2020. Conducting clinical trials in heart failure during (and after) the COVID-19 pandemic: an Expert Consensus Position Paper from the Heart Failure Association (HFA) of the European Society of Cardiology (ESC).|pdf=|usr=007}}
| + | |
− | {{tp|p=32464736|t=2020. A simulation training course for family medicine residents in China managing COVID-19.|pdf=|usr=007}}
| + | |
− | {{tp|p=32442317|t=2020. The case for Chronotherapy in COVID-19 induced Acute Respiratory Distress Syndrome (ARDS).|pdf=|usr=007}}
| + | |
− | {{tp|p=32403134|t=2020. Combination dose-escalated hydroxyurea and transfusion: an approach to conserve blood during the COVID-19 pandemic.|pdf=|usr=007}}
| + | |
− | {{tp|p=32407551|t=2020. Interrogation of the safety and efficacy of home-use light-based devices.|pdf=|usr=007}}
| + | |
− | {{tp|p=32429705|t=2020. COVID-19 and Nutrition: The Need for Initiatives to Promote Healthy Eating and Prevent Obesity in Childhood.|pdf=|usr=007}}
| + | |
− | {{tp|p=32510719|t=2020. Intramatricial methotrexate for treatment of resistant acrodermatitis continua of Hallopeau: an alterative in Covid-19.|pdf=|usr=007}}
| + | |
− | {{tp|p=32500633|t=2020. "Thinking outside the box in COVID-19 era"-Application of Modified Aerosol Box in Dermatology.|pdf=|usr=007}}
| + | |
− | {{tp|p=32229705|t=2020. Geroprotective and senoremediative strategies to reduce the comorbidity, infection rates, severity, and lethality in gerophilic and gerolavic infections |pdf=|usr=}}
| + | |
− | {{tp|p=32276453|t=2020. Exploring the Relevance of Senotherapeutics for the Current SARS-CoV-2 Emergency and Similar Future Global Health Threats |pdf=|usr=}}
| + | |
− | {{tp|p=32325124|t=ä. Vaporization, bioactive formulations and a marine natural product: different perspectives on antivirals |pdf=|usr=}}
| + | |
− | {{tp|p=32312129|t=2020. The role of additive manufacturing and antimicrobial polymers in the COVID-19 pandemic |pdf=|usr=}}
| + | |
− | {{tp|p=32336674|t=ä. COVID-19 Emergency Responders in FDA?s Center for Drug Evaluation and Research |pdf=|usr=}}
| + | |
− | {{tp|p=32356251|t=ä. Medical Toxicology and COVID-19: Our Role in a Pandemic |pdf=|usr=}}
| + | |
− | {{tp|p=32243778|t=2020. Ensuring global access to COVID-19 vaccines |pdf=|usr=}}
| + | |
− | {{tp|p=32247324|t=2020. Global coalition to accelerate COVID-19 clinical research in resource-limited settings |pdf=|usr=}}
| + | |
− | {{tp|p=32272857|t=2020. Role of Tissue Engineering in COVID-19 and Future Viral Outbreaks |pdf=|usr=}}
| + | |
− | {{tp|p=C7190525|t=2020. Adjunct Immunotherapies for the Management of Severely Ill COVID-19 Patients |pdf=|usr=}}
| + | |
− | {{tp|p=32129977|t=2020. Cell-Membrane-Mimicking Nanodecoys against Infectious Diseases |pdf=|usr=}}
| + | |
− | {{tp|p=29115746|t=2018. Progress Toward the Clinical Translation of Bioinspired Peptide and Protein Assemblies |pdf=|usr=}}
| + | |
− | {{tp|p=29717819|t=2018. Recent Advances in the Development of Antimicrobial Nanoparticles for Combating Resistant Pathogens |pdf=|usr=}}
| + | |
− | {{tp|p=C7194243|t=ä. Coronavirus Disease 2019 (COVID-19) Spread and Pharmacovigilance Implications: Expert Opinion |pdf=|usr=}}
| + | |
− | {{tp|p=32383008|t=ä. The Role of Pharmacovigilance and ISoP During the Global COVID-19 Pandemic |pdf=|usr=}}
| + | |
− | {{tp|p=32380052|t=2020. Granulocyte-targeted therapies for airway diseases |pdf=|usr=}}
| + | |
− | {{tp|p=32452420|t=2020. Antiviral activity of lycorine against Zika virus in vivo and in vitro |pdf=|usr=}}
| + | |
− | | + | |
− | ===009===
| + | |
− | | + | |
− | | + | |
− | {{tp|p=32535032|t=2020. Vitamin D Receptor stimulation to reduce Acute Respiratory Distress Syndrome (ARDS) in patients with Coronavirus SARS-CoV-2 infections: Revised Ms SBMB 2020_166.|pdf=|usr=009}}
| + | |
− | {{tp|p=32435607|t=2020. Potential Role of ACE2 in Coronavirus Disease 2019 (COVID-19) Prevention and Management.|pdf=|usr=009}}
| + | |
− | {{tp|p=32423449|t=2020. Rationale for the clinical use of adipose-derived mesenchymal stem cells for COVID-19 patients.|pdf=|usr=009}}
| + | |
− | {{tp|p=32493510|t=2020. SARS-CoV-2 SPIKE PROTEIN: an optimal immunological target for vaccines.|pdf=|usr=009}}
| + | |
− | {{tp|p=32405423|t=2020. Minimum costs to manufacture new treatments for COVID-19.|pdf=|usr=009}}
| + | |
− | {{tp|p=32405422|t=2020. Review of safety and minimum pricing of nitazoxanide for potential treatment of COVID-19.|pdf=|usr=009}}
| + | |
− | {{tp|p=32405421|t=2020. A review of the safety of favipiravir - a potential treatment in the COVID-19 pandemic?|pdf=|usr=009}}
| + | |
− | {{tp|p=32401274|t=2020. SARS-CoV-2 Rates in BCG-Vaccinated and Unvaccinated Young Adults.|pdf=|usr=009}}
| + | |
− | {{tp|p=32392282|t=2020. Association of Treatment With Hydroxychloroquine or Azithromycin With In-Hospital Mortality in Patients With COVID-19 in New York State.|pdf=|usr=009}}
| + | |
− | {{tp|p=32501511|t=2020. Simulated Assessment of Pharmacokinetically Guided Dosing for Investigational Treatments of Pediatric Patients With Coronavirus Disease 2019.|pdf=|usr=009}}
| + | |
− | {{tp|p=32530438|t=2020. New (re)Purpose for an old drug: purinergic receptor blockade may extinguish the COVID-19 thrombo-inflammatory firestorm.|pdf=|usr=009}}
| + | |
− | {{tp|p=32459647|t=2020. Intra-Rater and Inter-Rater Reliability of Tongue Coating Diagnosis in Traditional Chinese Medicine Using Smartphones: Quasi-Delphi Study.|pdf=|usr=009}}
| + | |
− | {{tp|p=32384188|t=2020. Parenteral Fish-Oil Emulsions in Critically Ill COVID-19 Emulsions.|pdf=|usr=009}}
| + | |
− | {{tp|p=32533592|t=2020. Pharmacist's perspective on HCQ treatment of COVID-19.|pdf=|usr=009}}
| + | |
− | {{tp|p=32460458|t=2020. In vitro activity of lopinavir/ritonavir and hydroxychloroquine against severe acute respiratory syndrome coronavirus 2 at concentrations achievable by usual doses.|pdf=|usr=009}}
| + | |
− | {{tp|p=32401715|t=2020. Triple combination of interferon beta-1b, lopinavir-ritonavir, and ribavirin in the treatment of patients admitted to hospital with COVID-19: an open-label, randomised, phase 2 trial.|pdf=|usr=009}}
| + | |
− | {{tp|p=32401712|t=2020. Interferon beta-1b for COVID-19.|pdf=|usr=009}}
| + | |
− | {{tp|p=32410758|t=2020. Consider pregnancy in COVID-19 therapeutic drug and vaccine trials.|pdf=|usr=009}}
| + | |
− | {{tp|p=32450109|t=2020. Chloroquine or hydroxychloroquine for COVID-19: why might they be hazardous?|pdf=|usr=009}}
| + | |
− | {{tp|p=32464115|t=2020. Caution against corticosteroid-based COVID-19 treatment.|pdf=|usr=009}}
| + | |
− | {{tp|p=32473680|t=2020. The starting line for COVID-19 vaccine development.|pdf=|usr=009}}
| + | |
− | {{tp|p=32450106|t=2020. Safety, tolerability, and immunogenicity of a recombinant adenovirus type-5 vectored COVID-19 vaccine: a dose-escalation, open-label, non-randomised, first-in-human trial.|pdf=|usr=009}}
| + | |
− | {{tp|p=32445630|t=2020. Vitamin-D and COVID-19: do deficient risk a poorer outcome?|pdf=|usr=009}}
| + | |
− | {{tp|p=32450054|t=2020. Hydroxychloroquine prophylaxis for high-risk COVID-19 contacts in India: a prudent approach.|pdf=|usr=009}}
| + | |
− | {{tp|p=32473139|t=2020. Death threats after a trial on chloroquine for COVID-19.|pdf=|usr=009}}
| + | |
− | {{tp|p=32518920|t=2020. Caution and clarity required in the use of chloroquine for COVID-19.|pdf=|usr=009}}
| + | |
− | {{tp|p=32501454|t=2020. Interleukin-1 blockade with high-dose anakinra in patients with COVID-19, acute respiratory distress syndrome, and hyperinflammation: a retrospective cohort study.|pdf=|usr=009}}
| + | |
− | {{tp|p=32518419|t=2020. The Janus kinase 1/2 inhibitor ruxolitinib in COVID-19 with severe systemic hyperinflammation.|pdf=|usr=009}}
| + | |
− | {{tp|p=32528040|t=2020. Holding CoVID in check through JAK? The MPN-approved compound ruxolitinib as a potential strategy to treat SARS-CoV-2 induced systemic hyperinflammation.|pdf=|usr=009}}
| + | |
− | {{tp|p=32535078|t=2020. Vaccination strategies to combat novel corona virus SARS-CoV-2.|pdf=|usr=009}}
| + | |
− | {{tp|p=32535080|t=2020. Virtual screening, ADME/Tox predictions and the drug repurposing concept for future use of old drugs against the COVID-19.|pdf=|usr=009}}
| + | |
− | {{tp|p=32497632|t=2020. Potential therapeutic targets for combating SARS-CoV-2: Drug repurposing, clinical trials and recent advancements.|pdf=|usr=009}}
| + | |
− | {{tp|p=32454157|t=2020. Crosstalk between endoplasmic reticulum stress and anti-viral activities: A novel therapeutic target for COVID-19.|pdf=|usr=009}}
| + | |
− | {{tp|p=32450171|t=2020. Coronaviruses pandemics: Can neutralizing antibodies help?|pdf=|usr=009}}
| + | |
− | {{tp|p=32450166|t=2020. Unravelling lead antiviral phytochemicals for the inhibition of SARS-CoV-2 M(pro) enzyme through in silico approach.|pdf=|usr=009}}
| + | |
− | {{tp|p=32422305|t=2020. Lungs as target of COVID-19 infection: Protective common molecular mechanisms of vitamin D and melatonin as a new potential synergistic treatment.|pdf=|usr=009}}
| + | |
− | {{tp|p=32418894|t=2020. A systematic review on use of aminoquinolines for the therapeutic management of COVID-19: Efficacy, safety and clinical trials.|pdf=|usr=009}}
| + | |
− | {{tp|p=32478465|t=2020. First case of drug-induced liver injury associated with the use of tocilizumab in a patient with COVID-19.|pdf=|usr=009}}
| + | |
− | {{tp|p=32532461|t=2020. Eficacia de los pulsos de corticoides en pacientes con sindrome de liberacion de citocinas inducido por infeccion por SARS-CoV-2.|pdf=|usr=009}}
| + | |
− | {{tp|p=32425245|t=2020. Hidroxicloroquina en el tratamiento del COVID-19: como utilizarla a la espera de evidencia cientifica concluyente.|pdf=|usr=009}}
| + | |
− | {{tp|p=32416415|t=2020. Etoposide-based therapy for severe forms of COVID-19.|pdf=|usr=009}}
| + | |
− | {{tp|p=32516655|t=2020. Pulmonary delivery of nanostructured lipid carriers for effective repurposing of salinomycin as an antiviral agent.|pdf=|usr=009}}
| + | |
− | {{tp|p=32504923|t=2020. N-Acetylcysteine: A potential therapeutic agent for SARS-CoV-2.|pdf=|usr=009}}
| + | |
− | {{tp|p=32485316|t=2020. Pentoxifylline and complicated COVID-19: A pathophysiologically based treatment proposal.|pdf=|usr=009}}
| + | |
− | {{tp|p=32498007|t=2020. Immunopharmacological management of COVID-19: Potential therapeutic role of valproic acid.|pdf=|usr=009}}
| + | |
− | {{tp|p=32492562|t=2020. The association between obesity and poor outcome after COVID-19 indicates a potential therapeutic role for montelukast.|pdf=|usr=009}}
| + | |
− | {{tp|p=32480250|t=2020. Protective effects of vaccinations and endemic infections on COVID-19: A hypothesis.|pdf=|usr=009}}
| + | |
− | {{tp|p=32464491|t=2020. Selenium supplementation in the prevention of coronavirus infections (COVID-19).|pdf=|usr=009}}
| + | |
− | {{tp|p=32526511|t=2020. A potential role for cyclophosphamide in the mitigation of acute respiratory distress syndrome among patients with SARS-CoV-2.|pdf=|usr=009}}
| + | |
− | {{tp|p=32473509|t=2020. Zinc Iodide in combination with Dimethyl Sulfoxide for treatment of SARS-CoV-2 and other viral infections.|pdf=|usr=009}}
| + | |
− | {{tp|p=32470789|t=2020. Survival of COVID-19 patients requires precise immune regulation: The hypothetical immunoprotective role of nicotinic agonists.|pdf=|usr=009}}
| + | |
− | {{tp|p=32534175|t=2020. Three novel prevention, diagnostic, and treatment options for COVID-19 urgently necessitating controlled randomized trials.|pdf=|usr=009}}
| + | |
− | {{tp|p=32464494|t=2020. Homocysteine as a potential predictor of cardiovascular risk in patients with COVID-19.|pdf=|usr=009}}
| + | |
− | {{tp|p=32526507|t=2020. Use of hydroxychloroquine and interferon alpha-2b for the prophylaxis of COVID-19.|pdf=|usr=009}}
| + | |
− | {{tp|p=32464493|t=2020. Hypoxia inducible factor-1 protects against COVID-19: A hypothesis.|pdf=|usr=009}}
| + | |
− | {{tp|p=32464492|t=2020. Can moderate intensity aerobic exercise be an effective and valuable therapy in preventing and controlling the pandemic of COVID-19?|pdf=|usr=009}}
| + | |
− | {{tp|p=32460208|t=2020. Sodium chromo-glycate and palmitoylethanolamide: A possible strategy to treat mast cell-induced lung inflammation in COVID-19.|pdf=|usr=009}}
| + | |
− | {{tp|p=32425307|t=2020. Mesenchymal Stem Cells -Bridge Catalyst Between Innte And Adaptive Immunity In Covid 19.|pdf=|usr=009}}
| + | |
− | {{tp|p=32425306|t=2020. Protective potential of Expectorants against COVID-19.|pdf=|usr=009}}
| + | |
− | {{tp|p=32425303|t=2020. Bioactive compounds with possible inhibitory activity of Angiotensin-Converting Enzyme-II; a gate to manage and prevent COVID-19.|pdf=|usr=009}}
| + | |
− | {{tp|p=32428811|t=2020. Exercise as medicine for COVID-19: An ACE in the hole?|pdf=|usr=009}}
| + | |
− | {{tp|p=32416408|t=2020. As a potential treatment of COVID-19: Montelukast.|pdf=|usr=009}}
| + | |
− | {{tp|p=32413699|t=2020. Lithium chloride combination with rapamycin for the treatment of COVID-19 pneumonia.|pdf=|usr=009}}
| + | |
− | {{tp|p=32531538|t=2020. Is hesperidin essential for prophylaxis and treatment of COVID-19 Infection?|pdf=|usr=009}}
| + | |
− | {{tp|p=32531537|t=2020. RAGE receptor: May be a potential inflammatory mediator for SARS-COV-2 infection?|pdf=|usr=009}}
| + | |
− | {{tp|p=32516733|t=2020. B-cell engineering: A promising approach towards vaccine development for COVID-19.|pdf=|usr=009}}
| + | |
− | {{tp|p=32535456|t=2020. Natural RNA dependent RNA polymerase inhibitors: Molecular docking studies of some biologically active alkaloids of Argemone mexicana.|pdf=|usr=009}}
| + | |
− | {{tp|p=32534337|t=2020. Diacerein: A potential multi-target therapeutic drug for COVID-19.|pdf=|usr=009}}
| + | |
− | {{tp|p=32505075|t=2020. Fighting against frailty and sarcopenia - As well as COVID-19?|pdf=|usr=009}}
| + | |
− | {{tp|p=32505072|t=2020. COVID-19 and picotechnology: Potential opportunities.|pdf=|usr=009}}
| + | |
− | {{tp|p=32505069|t=2020. Hydrogen peroxide and viral infections: A literature review with research hypothesis definition in relation to the current covid-19 pandemic.|pdf=|usr=009}}
| + | |
− | {{tp|p=32400020|t=2020. COVID-19 and implications for thiopurine use.|pdf=|usr=009}}
| + | |
− | {{tp|p=32395220|t=2020. SARS-CoV-2 (COVID-19) and Chronic Myeloid Leukemia (CML): a Case Report and Review of ABL Kinase Involvement in Viral Infection.|pdf=|usr=009}}
| + | |
− | {{tp|p=32470350|t=2020. Commentary: Myths and facts on vitamin D amidst the COVID-19 pandemic.|pdf=|usr=009}}
| + | |
− | {{tp|p=32497535|t=2020. Commentary: Phosphodiesterase 4 inhibitors as potential adjunct treatment targeting the cytokine storm in COVID-19.|pdf=|usr=009}}
| + | |
− | {{tp|p=32418885|t=2020. Commentary: Could iron chelators prove to be useful as an adjunct to COVID-19 Treatment Regimens?|pdf=|usr=009}}
| + | |
− | {{tp|p=32473390|t=2020. A review of South Indian medicinal plant has the ability to combat against deadly viruses along with COVID-19?|pdf=|usr=009}}
| + | |
− | {{tp|p=32437926|t=2020. From SARS-CoV to SARS-CoV-2: safety and broad-spectrum are important for coronavirus vaccine development.|pdf=|usr=009}}
| + | |
− | {{tp|p=32445881|t=2020. Arbidol/IFN-alpha2b therapy for patients with corona virus disease 2019: a retrospective multicenter cohort study.|pdf=|usr=009}}
| + | |
− | {{tp|p=32442649|t=2020. Plant Solutions for the COVID-19 Pandemic and Beyond: Historical Reflections and Future Perspectives.|pdf=|usr=009}}
| + | |
− | {{tp|p=32533920|t=2020. The Improbability of the Rapid Development of a Vaccine for SARS-CoV-2.|pdf=|usr=009}}
| + | |
− | {{tp|p=32404512|t=2020. Can Unconventional Immunomodulatory Agents Help Alleviate COVID-19 Symptoms and Severity?|pdf=|usr=009}}
| + | |
− | {{tp|p=32445440|t=2020. Remdesivir for the Treatment of Covid-19 - Preliminary Report.|pdf=|usr=009}}
| + | |
− | {{tp|p=32445439|t=2020. Surgery Scheduling in a Crisis.|pdf=|usr=009}}
| + | |
− | {{tp|p=32433465|t=2020. Immunogenicity of a DNA vaccine candidate for COVID-19.|pdf=|usr=009}}
| + | |
− | {{tp|p=32529545|t=2020. Natural Products as Potential Leads Against Coronaviruses: Could They be Encouraging Structural Models Against SARS-CoV-2?|pdf=|usr=009}}
| + | |
− | {{tp|p=32499636|t=2020. COVID-19 vaccines: neutralizing antibodies and the alum advantage.|pdf=|usr=009}}
| + | |
− | {{tp|p=32533109|t=2020. Passive antibody therapy in COVID-19.|pdf=|usr=009}}
| + | |
− | {{tp|p=32393823|t=2020. BCG-induced trained immunity: can it offer protection against COVID-19?|pdf=|usr=009}}
| + | |
− | {{tp|p=32462282|t=2020. Ivermectin, antiviral properties and COVID-19: a possible new mechanism of action.|pdf=|usr=009}}
| + | |
− | {{tp|p=32451597|t=2020. Vitamin D can prevent COVID-19 infection-induced multiple organ damage.|pdf=|usr=009}}
| + | |
− | {{tp|p=32430617|t=2020. A comprehensive review on drug repositioning against coronavirus disease 2019 (COVID19).|pdf=|usr=009}}
| + | |
− | {{tp|p=32350818|t=2020. Chloroquine-induced QTc prolongation in COVID-19 patients.|pdf=|usr=009}}
| + | |
− | {{tp|p=32342609|t=2020. The Use of Non-invasive Vagus Nerve Stimulation to Treat Respiratory Symptoms Associated With COVID-19: A Theoretical Hypothesis and Early Clinical Experience.|pdf=|usr=009}}
| + | |
− | {{tp|p=32383751|t=2020. Beyond Smoking Cessation: Investigating Medicinal Nicotine to Prevent and Treat COVID-19.|pdf=|usr=009}}
| + | |
− | {{tp|p=32528732|t=2020. Universal coronavirus vaccines: the time to start is now.|pdf=|usr=009}}
| + | |
− | {{tp|p=32509338|t=2020. Certainty of success: three critical parameters in coronavirus vaccine development.|pdf=|usr=009}}
| + | |
− | {{tp|p=32521760|t=2020. Diet Supplementation, Probiotics, and Nutraceuticals in SARS-CoV-2 Infection: A Scoping Review.|pdf=|usr=009}}
| + | |
− | {{tp|p=32532069|t=2020. Can Probiotics and Diet Promote Beneficial Immune Modulation and Purine Control in Coronavirus Infection?|pdf=|usr=009}}
| + | |
− | {{tp|p=32519174|t=2020. What can we learn about corticosteroid therapy as a treatment for COVID-19?|pdf=|usr=009}}
| + | |
− | {{tp|p=32528623|t=2020. COVID-19 infection and oxidative stress: an under-explored approach for prevention and treatment?|pdf=|usr=009}}
| + | |
− | {{tp|p=32456404|t=2020. The vaccine journey for COVID-19: a comprehensive systematic review of current clinical trials in humans.|pdf=|usr=009}}
| + | |
− | {{tp|p=32431755|t=2020. The novel immunomodulatory biologic LMWF5A for pharmacological attenuation of the "cytokine storm" in COVID-19 patients: a hypothesis.|pdf=|usr=009}}
| + | |
− | {{tp|p=32451736|t=2020. Repurposing Quaternary Ammonium Compounds as Potential Treatments for COVID-19.|pdf=|usr=009}}
| + | |
− | {{tp|p=32454586|t=2020. Demand for potentially hazardous COVID-19 treatments.|pdf=|usr=009}}
| + | |
− | {{tp|p=32454583|t=2020. ICER releases pricing models for potential COVID-19 treatments.|pdf=|usr=009}}
| + | |
− | {{tp|p=32473310|t=2020. Discovery of the FDA-approved drugs bexarotene, cetilistat, diiodohydroxyquinoline, and abiraterone as potential COVID-19 treatments with a robust two-tier screening system.|pdf=|usr=009}}
| + | |
− | {{tp|p=32445956|t=2020. Review on the potential action mechanisms of Chinese medicines in treating Coronavirus Disease 2019 (COVID-19).|pdf=|usr=009}}
| + | |
− | {{tp|p=32445955|t=2020. Letter to the Editor in response to the article "Could IL-17 represent a new therapeutic target for the treatment and/or management of COVID-19-related respiratory syndrome?"|pdf=|usr=009}}
| + | |
− | {{tp|p=32442720|t=2020. A review of therapeutic agents and Chinese herbal medicines against SARS-COV-2 (COVID-19).|pdf=|usr=009}}
| + | |
− | {{tp|p=32430287|t=2020. Rho kinase inhibitors for SARS-CoV-2 induced acute respiratory distress syndrome: Support from Bartter's and Gitelman's syndrome patients.|pdf=|usr=009}}
| + | |
− | {{tp|p=32430286|t=2020. The possible mechanisms of action of 4-aminoquinolines (chloroquine/hydroxychloroquine) against Sars-Cov-2 infection (COVID-19): A role for iron homeostasis?|pdf=|usr=009}}
| + | |
| | | |
− | {{tp|p=32405226|t=2020. Anti-malarial drug, artemisinin and its derivatives for the treatment of respiratory diseases.|pdf=|usr=009}}
| |
− | {{tp|p=32438037|t=2020. Efficacy and Safety of Integrated Traditional Chinese and Western Medicine for Corona Virus Disease 2019 (COVID-19): a systematic review and meta-analysis.|pdf=|usr=009}}
| |
− | {{tp|p=32438034|t=2020. Does lopinavir really inhibit SARS-CoV-2?|pdf=|usr=009}}
| |
− | {{tp|p=32407959|t=2020. Compassionate remdesivir treatment of severe Covid-19 pneumonia in intensive care unit (ICU) and Non-ICU patients: Clinical outcome and differences in post-treatment hospitalisation status.|pdf=|usr=009}}
| |
− | {{tp|p=32502640|t=2020. Optimising effectiveness of health care and value of clinical trials in the COVID -19 outbreak.|pdf=|usr=009}}
| |
− | {{tp|p=32470470|t=2020. Cathepsin L-selective inhibitors: A potentially promising treatment for COVID-19 patients.|pdf=|usr=009}}
| |
− | {{tp|p=32442437|t=2020. The proteasome as a druggable target with multiple therapeutic potentialities: Cutting and non-cutting edges.|pdf=|usr=009}}
| |
− | {{tp|p=32437972|t=2020. COVID-19: Beyond the virus. The use of Photodynamic Therapy for the Treatment of Infections in the Respiratory Tract.|pdf=|usr=009}}
| |
− | {{tp|p=32425361|t=2020. Efficacy and safety of Lianhuaqingwen capsules, a repurposed Chinese herb, in patients with coronavirus disease 2019: A multicenter, prospective, randomized controlled trial.|pdf=|usr=009}}
| |
− | {{tp|p=32493609|t=2020. SGLT-2 inhibitors for COVID-19 - A miracle waiting to happen or just another beat around the bush?|pdf=|usr=009}}
| |
− | {{tp|p=32519302|t=2020. Mesenchymal stem cell therapy for acute respiratory distress syndrome: from basic to clinics.|pdf=|usr=009}}
| |
− | {{tp|p=32415971|t=2020. Use of statins in patients with COVID-19.|pdf=|usr=009}}
| |
− | {{tp|p=32415962|t=2020. Reply: Use of statins in patients with COVID-19.|pdf=|usr=009}}
| |
− | {{tp|p=32437821|t=2020. Radiation therapy for COVID-19 pneumopathy.|pdf=|usr=009}}
| |
− | {{tp|p=32437820|t=2020. Low dose radiation therapy as a potential life saving treatment for COVID-19-induced acute respiratory distress syndrome (ARDS).|pdf=|usr=009}}
| |
− | {{tp|p=32413531|t=2020. Lack of supporting data make the risks of a clinical trial of radiation therapy as a treatment for COVID-19 pneumonia unacceptable.|pdf=|usr=009}}
| |
− | {{tp|p=32522574|t=2020. Coping with hypoxemia: Could erythropoietin (EPO) be an adjuvant treatment of COVID-19?|pdf=|usr=009}}
| |
− | {{tp|p=32514354|t=2020. High-dose, short-term corticosteroids for ARDS caused by COVID-19: a case series.|pdf=|usr=009}}
| |
− | {{tp|p=32394513|t=2020. Chloroquine and hydroxychloroquine for COVID-19: A word of caution.|pdf=|usr=009}}
| |
− | {{tp|p=32426002|t=2020. Opciones Terapeuticas En El Manejo De Covid-19 Grave: Una Perspectiva De Reumatologia.|pdf=|usr=009}}
| |
− | {{tp|p=32426001|t=2020. Colchicina: una herramienta terapeutica potencial frente a COVID-19. Experiencia en 5 pacientes.|pdf=|usr=009}}
| |
− | {{tp|p=32395001|t=2020. Evidencia viva como respuesta a las controversias en el uso de antimalaricos en COVID-19.|pdf=|usr=009}}
| |
− | {{tp|p=32414660|t=2020. Exercising in times of COVID-19: what do experts recommend doing within four walls?|pdf=|usr=009}}
| |
− | {{tp|p=32491104|t=2020. Clinical characteristics and therapeutic procedure for a critical case of novel coronavirus pneumonia treated with glucocorticoids and non-invasive ventilator treatment.|pdf=|usr=009}}
| |
− | {{tp|p=32501367|t=2020. Chloroquine dosage regimens in patients with COVID-19: Safety risks and optimization using simulations.|pdf=|usr=009}}
| |
− | {{tp|p=32418114|t=2020. Low dose of hydroxychloroquine reduces fatality of critically ill patients with COVID-19.|pdf=|usr=009}}
| |
− | {{tp|p=32518317|t=2020. Sofosbuvir as a potential alternative to treat the SARS-CoV-2 epidemic.|pdf=|usr=009}}
| |
− | {{tp|p=32413619|t=2020. beta-Glucan extracts from the same edible shiitake mushroom Lentinus edodes produce differential in-vitro immunomodulatory and pulmonary cytoprotective effects - Implications for coronavirus disease (COVID-19) immunotherapies.|pdf=|usr=009}}
| |
− | {{tp|p=32513867|t=2020. Antibody signature induced by SARS-CoV-2 spike protein immunogens in rabbits.|pdf=|usr=009}}
| |
− | {{tp|p=32434945|t=2020. DNA vaccine protection against SARS-CoV-2 in rhesus macaques.|pdf=|usr=009}}
| |
− | {{tp|p=32404477|t=2020. A noncompeting pair of human neutralizing antibodies block COVID-19 virus binding to its receptor ACE2.|pdf=|usr=009}}
| |
− | {{tp|p=32385228|t=2020. Therapeutic efficacy of Pudilan Xiaoyan Oral Liquid (PDL) for COVID-19 in vitro and in vivo.|pdf=|usr=009}}
| |
− | {{tp|p=32467561|t=2020. Immune response in COVID-19: addressing a pharmacological challenge by targeting pathways triggered by SARS-CoV-2.|pdf=|usr=009}}
| |
− | {{tp|p=32460839|t=2020. Intravenous infusion of human umbilical cord Wharton's jelly-derived mesenchymal stem cells as a potential treatment for patients with COVID-19 pneumonia.|pdf=|usr=009}}
| |
− | {{tp|p=32526079|t=2020. Current status of mesenchymal stem cell therapy for immune/inflammatory lung disorders: Gleaning insights for possible use in COVID-19.|pdf=|usr=009}}
| |
− | {{tp|p=32388805|t=2020. Low-dose radiation therapy for COVID-19 pneumopathy: what is the evidence?|pdf=|usr=009}}
| |
− | {{tp|p=32394099|t=2020. Low-dose radiotherapy for SARS-CoV-2 pneumonia.|pdf=|usr=009}}
| |
− | {{tp|p=32412544|t=2020. In silico fight against novel coronavirus by finding chromone derivatives as inhibitor of coronavirus main proteases enzyme.|pdf=|usr=009}}
| |
− | {{tp|p=32528195|t=2020. Broad beans (Vicia faba) and the potential to protect from COVID-19 coronavirus infection.|pdf=|usr=009}}
| |
− | {{tp|p=32528194|t=2020. Perspectives on repositioning chloroquine and hydroxychloroquine for the treatment of Covid-19.|pdf=|usr=009}}
| |
− | {{tp|p=32436460|t=2020. TNFalpha inhibitor may be effective for severe COVID-19: learning from toxic epidermal necrolysis.|pdf=|usr=009}}
| |
− | {{tp|p=32436445|t=2020. Potential specific therapies in COVID-19.|pdf=|usr=009}}
| |
− | {{tp|p=32483428|t=2020. Optimizing use of theranostic nanoparticles as a life-saving strategy for treating COVID-19 patients.|pdf=|usr=009}}
| |
− | {{tp|p=32473812|t=2020. Chloroquine and hydroxychloroquine in the management of COVID-19: Much kerfuffle but little evidence.|pdf=|usr=009}}
| |
− | {{tp|p=32418732|t=2020. Chloroquine and hydroxychloroquine during pregnancy: What do we know?|pdf=|usr=009}}
| |
− | {{tp|p=32457932|t=2020. Chloroquine, hydroxychloroquine and COVID-19.|pdf=|usr=009}}
| |
− | {{tp|p=32487513|t=2020. Convalescent (immune) plasma treatment in a myelodysplastic COVID-19 patient with disseminated tuberculosis.|pdf=|usr=009}}
| |
− | {{tp|p=32532691|t=2020. Position paper on the preparation of immune plasma to be used in the treatment of patients with COVID-19.|pdf=|usr=009}}
| |
− | {{tp|p=32467007|t=2020. Successful treatment of a centenarian with coronavirus disease 2019 (COVID-19) using convalescent plasma.|pdf=|usr=009}}
| |
− | {{tp|p=32425645|t=2020. Use of convalescent plasma in COVID-19 patients in China.|pdf=|usr=009}}
| |
− | {{tp|p=32406985|t=2020. Interleukin-6 receptor antagonist therapy to treat SARS-CoV-2 driven inflammatory syndrome in a kidney transplant recipient.|pdf=|usr=009}}
| |
− | {{tp|p=32473994|t=2020. Crushing lopinavir-ritonavir tablets may decrease the efficacy of therapy in COVID-19 patients.|pdf=|usr=009}}
| |
− | {{tp|p=32485391|t=2020. Hydroxychloroquine-azithromycin for COVID-19 - Warranted or dangerous?|pdf=|usr=009}}
| |
− | {{tp|p=32360423|t=2020. Malaria prophylaxis approach during COVID-19 pandemic.|pdf=|usr=009}}
| |
− | {{tp|p=32471655|t=2020. Overwhelming COVID-19 Clinical Trials: Call for Prospective Meta-Analyses.|pdf=|usr=009}}
| |
− | {{tp|p=32454984|t=2020. Battling COVID-19: using old weapons for a new enemy.|pdf=|usr=009}}
| |
− | {{tp|p=32376108|t=2020. Archetype analysis of older adult immunization decision-making and implementation in 34 countries.|pdf=|usr=009}}
| |
− | {{tp|p=32387011|t=2020. Tortoises, hares, and vaccines: A cautionary note for SARS-CoV-2 vaccine development.|pdf=|usr=009}}
| |
− | {{tp|p=32418794|t=2020. A Veterinary Vaccine Development Process Map to assist in the development of new vaccines.|pdf=|usr=009}}
| |
− | {{tp|p=32526960|t=2020. Immunoinformatics and Structural Analysis for Identification of Immunodominant Epitopes in SARS-CoV-2 as Potential Vaccine Targets.|pdf=|usr=009}}
| |
− | {{tp|p=32531955|t=2020. Prospects of Replication-Deficient Adenovirus Based Vaccine Development against SARS-CoV-2.|pdf=|usr=009}}
| |
− | {{tp|p=32236815|t=2020. Inefficiency of Sera from Mice Treated with Pseudotyped SARS-CoV to Neutralize 2019-nCoV Infection.|pdf=|usr=009}}
| |
− | {{tp|p=32524253|t=2020. mRNA Vaccines: Possible Tools to Combat SARS-CoV-2.|pdf=|usr=009}}
| |
− | {{tp|p=32530808|t=2020. Recovery of severely ill COVID-19 patients by intravenous immunoglobulin (IVIG) treatment: A case series.|pdf=|usr=009}}
| |
− | {{tp|p=32531236|t=2020. Potential drugs for the treatment of the novel coronavirus pneumonia (COVID-19) in China.|pdf=|usr=009}}
| |
− | {{tp|p=32532094|t=2020. The Anticoagulant Nafamostat Potently Inhibits SARS-CoV-2 S Protein-Mediated Fusion in a Cell Fusion Assay System and Viral Infection In Vitro in a Cell-Type-Dependent Manner.|pdf=|usr=009}}
| |
− | {{tp|p=32532085|t=2020. Broad-Spectrum Host-Based Antivirals Targeting the Interferon and Lipogenesis Pathways as Potential Treatment Options for the Pandemic Coronavirus Disease 2019 (COVID-19).|pdf=|usr=009}}
| |
− | {{tp|p=32426090|t=2020. COVID-19, asthma, and biologic therapies: What we need to know.|pdf=|usr=009}}
| |
− | {{tp|p=32417996|t=2020. BCG versus COVID-19: impact on urology.|pdf=|usr=009}}
| |
− | {{tp|p=32514854|t=2020. Biologikatherapie nach COVID-19-Infektion : Keine Reaktivierung einer COVID-19-Infektion bei positivem Antikorperstatus SARS-CoV-2 unter Biologikatherapie.|pdf=|usr=009}}
| |
| | | |
− | PMC searches were done at moremed.org
| + | A concept of curative retargeting has been found by cellular lockdown with kinase inhibitors from the oncologic pharmacopoiea. |
| + | This means, virus replication can be stalled to zero w/o need of develpoment of new substances. There is no need for world |
| + | vaccination anymore. The virus needs permissible cells, and most perimissible is phosphotyrosine on its own compnents. |
| + | Paper is (not yet in PubMed) : |
| | | |
| + | *'''[https://www.sciencedirect.com/science/article/pii/S1097276520305499?via%3Dihub Growth factor receptor signaling inhibition prevents SARS-CoV-2 replication at Mol Cell 2020/08/11]''' |
| + | credentials to [https://web.de/magazine/news/coronavirus/coronavirus-blockade-zellulaerer-kommunikation-forscher-stoppen-vermehrung-sars-cov-2-35045170 Marinus Brandl] who told us about it today. |
| + | based on e.g. |
| | | |
| + | {{ttp|p=32408336|t=2020. Proteomics of SARS-CoV-2-infected host cells reveals therapy targets |pdf=|usr=}} |
| | | |
| + | ======================================================================================= |
| | | |
− | {{tp|p=32581256|t=2020. Recombinant human ACE2: potential therapeutics of SARS-CoV-2 infection and its complication.|pdf=|usr=010}}
| + | COVID19 is now a CURABLE disease !!! |
− | {{tp|p=32555446|t=2020. Overview of therapeutic drug research for COVID-19 in China.|pdf=|usr=010}}
| + | |
− | {{tp|p=32544884|t=2020. De novo design of protein peptides to block association of the SARS-CoV-2 spike protein with human ACE2.|pdf=|usr=010}}
| + | |
− | {{tp|p=32574894|t=2020. Repurposing 0.5% povidone iodine solution in otorhinolaryngology practice in Covid 19 pandemic.|pdf=|usr=010}}
| + | |
− | {{tp|p=32583087|t=2020. IL-1R blockade is not effective in patients with hematological malignancies and severe SARS-CoV-2 infection.|pdf=|usr=010}}
| + | |
− | {{tp|p=32551892|t=2020. Update Alert: Should Clinicians Use Chloroquine or Hydroxychloroquine Alone or in Combination With Azithromycin for the Prophylaxis or Treatment of COVID-19? Living Practice Points From the American College of Physicians.|pdf=|usr=010}}
| + | |
− | {{tp|p=32543882|t=2020. Promoting Better Clinical Trials and Drug Information as Public Health Interventions for the COVID-19 Emergency in Italy.|pdf=|usr=010}}
| + | |
− | {{tp|p=32571831|t=2020. IMPACT OF GLUCOCORTICOID TREATMENT IN SARS-COV-2 INFECTION MORTALITY: A RETROSPECTIVE CONTROLLED COHORT STUDY.|pdf=|usr=010}}
| + | |
− | {{tp|p=32575554|t=2020. Targeting the Heme-Heme Oxygenase System to Prevent Severe Complications Following COVID-19 Infections.|pdf=|usr=010}}
| + | |
− | {{tp|p=32562705|t=2020. A library of nucleotide analogues terminate RNA synthesis catalyzed by polymerases of coronaviruses that cause SARS and COVID-19.|pdf=|usr=010}}
| + | |
− | {{tp|p=32557214|t=2020. Potential Role of Anti-interleukin (IL)-6 Drugs in the Treatment of COVID-19: Rationale, Clinical Evidence and Risks.|pdf=|usr=010}}
| + | |
− | {{tp|p=32586336|t=2020. A prospect on the use of antiviral drugs to control local outbreaks of COVID-19.|pdf=|usr=010}}
| + | |
− | {{tp|p=32554525|t=2020. Clinical efficacy of hydroxychloroquine in patients with covid-19 pneumonia who require oxygen: observational comparative study using routine care data.|pdf=|usr=010}}
| + | |
− | {{tp|p=32572174|t=2020. Repurposing anticancer drugs for COVID-19-induced inflammation, immune dysfunction, and coagulopathy.|pdf=|usr=010}}
| + | |
− | {{tp|p=32546835|t=2020. Immune checkpoint blockade: releasing the breaks or a protective barrier to COVID-19 severe acute respiratory syndrome?|pdf=|usr=010}}
| + | |
− | {{tp|p=32557011|t=2020. A Double-Edged Sword-Cardiovascular Concerns of Potential Anti-COVID-19 Drugs.|pdf=|usr=010}}
| + | |
− | {{tp|p=32492407|t=2020. Pandemic Preparedness: Developing Vaccines and Therapeutic Antibodies For COVID-19.|pdf=|usr=010}}
| + | |
− | {{tp|p=32546764|t=2020. Immunity-and-matrix-regulatory cells derived from human embryonic stem cells safely and effectively treat mouse lung injury and fibrosis.|pdf=|usr=010}}
| + | |
− | {{tp|p=32541865|t=2020. Boceprevir, GC-376, and calpain inhibitors II, XII inhibit SARS-CoV-2 viral replication by targeting the viral main protease.|pdf=|usr=010}}
| + | |
− | {{tp|p=32588163|t=2020. Auxiliary role of mesenchymal stem cells as regenerative medicine soldiers to attenuate inflammatory processes of severe acute respiratory infections caused by COVID-19.|pdf=|usr=010}}
| + | |
− | {{tp|p=32585295|t=2020. Inhibition of cytokine signaling by ruxolitinib and implications for COVID-19 treatment.|pdf=|usr=010}}
| + | |
− | {{tp|p=32564213|t=2020. The rationale for the use of colchicine in COVID-19: comments on the letter by Cumhur Cure M et al.|pdf=|usr=010}}
| + | |
− | {{tp|p=32564212|t=2020. Comment on "Colchicine may not be effective in COVID-19 infection; it may even be harmful?"|pdf=|usr=010}}
| + | |
− | {{tp|p=32556936|t=2020. Colchicine as a possible therapeutic option in COVID-19 infection.|pdf=|usr=010}}
| + | |
− | {{tp|p=32548723|t=2020. Impact of anti-rheumatic drugs and steroids on clinical course and prognosis of COVID-19.|pdf=|usr=010}}
| + | |
− | {{tp|p=32542396|t=2020. Decoy ACE2-expressing extracellular vesicles that competitively bind SARS-CoV-2 as a possible COVID-19 therapy.|pdf=|usr=010}}
| + | |
− | {{tp|p=32593060|t=2020. Helping doctors hasten COVID-19 treatment: Towards a rescue framework for the transfusion of best convalescent plasma to the most critical patients based on biological requirements via ml and novel MCDM methods.|pdf=|usr=010}}
| + | |
− | {{tp|p=32558354|t=2020. Timing of antiviral treatment initiation is critical to reduce SARS-CoV-2 viral load.|pdf=|usr=010}}
| + | |
− | {{tp|p=32552848|t=2020. Compassionate use of others' immunity - understanding gut microbiome in Covid-19.|pdf=|usr=010}}
| + | |
− | {{tp|p=32552832|t=2020. First do no harm-beware the risk of therapeutic plasma exchange in severe COVID-19.|pdf=|usr=010}}
| + | |
− | {{tp|p=32572376|t=2020. Literature-based review of the drugs used for the treatment of COVID-19.|pdf=|usr=010}}
| + | |
− | {{tp|p=32578027|t=2020. A Rapid Advice Guideline for the Prevention of Novel Coronavirus Through Nutritional Intervention.|pdf=|usr=010}}
| + | |
− | {{tp|p=32562159|t=2020. The clinical value of two combination regimens in the Management of Patients Suffering from Covid-19 pneumonia: a single centered, retrospective, observational study.|pdf=|usr=010}}
| + | |
− | {{tp|p=32542964|t=2020. Treatment of Covid19 - Repurposing drugs commonly used in dermatology.|pdf=|usr=010}}
| + | |
− | {{tp|p=32542893|t=2020. Acute generalized exanthematous pustulosis induced by empiric hydroxychloroquine for presumed COVID-19.|pdf=|usr=010}}
| + | |
− | {{tp|p=32537890|t=2020. Observation and consideration on using of JAKi in clinical trials in times of COVID-19.|pdf=|usr=010}}
| + | |
− | {{tp|p=32592841|t=2020. A proposed mechanism for the possible therapeutic potential of Metformin in COVID-19.|pdf=|usr=010}}
| + | |
− | {{tp|p=32581194|t=2020. Targeting lymphocyte Kv1.3-channels to suppress cytokine storm in severe COVID-19: Can it be a novel therapeutic strategy?|pdf=|usr=010}}
| + | |
− | {{tp|p=32554953|t=2020. Can mesenchymal stem cell therapy be the interim management of COVID-19?|pdf=|usr=010}}
| + | |
− | {{tp|p=32592866|t=2020. Emerging vaccine delivery systems for COVID-19: Functionalised silica nanoparticles offer a potentially safe and effective alternative delivery system for DNA/RNA vaccines and may be useful in the hunt for a COVID-19 vaccine.|pdf=|usr=010}}
| + | |
− | {{tp|p=32574699|t=2020. Discovering small-molecule therapeutics against SARS-CoV-2.|pdf=|usr=010}}
| + | |
− | {{tp|p=32574697|t=2020. Current and future therapeutical approaches for COVID-19.|pdf=|usr=010}}
| + | |
− | {{tp|p=32569833|t=2020. Exportin 1 inhibition as antiviral therapy.|pdf=|usr=010}}
| + | |
− | {{tp|p=32546018|t=2020. The broad-spectrum antiviral recommendations for drug discovery against COVID-19.|pdf=|usr=010}}
| + | |
− | {{tp|p=32578156|t=2020. Lopinavir-Ritonavir in the Treatment of COVID-19: A Dynamic Systematic Benefit-Risk Assessment.|pdf=|usr=010}}
| + | |
− | {{tp|p=32592145|t=2020. Identification of a Potential Peptide Inhibitor of SARS-CoV-2 Targeting its Entry into the Host Cells.|pdf=|usr=010}}
| + | |
− | {{tp|p=32574958|t=2020. Targeting innate immunity by blocking CD14: Novel approach to control inflammation and organ dysfunction in COVID-19 illness.|pdf=|usr=010}}
| + | |
− | {{tp|p=32573433|t=2020. Antibodies to SARS-CoV-2 and their potential for therapeutic passive immunization.|pdf=|usr=010}}
| + | |
− | {{tp|p=32569446|t=2020. Can artificial intelligence identify effective COVID-19 therapies?|pdf=|usr=010}}
| + | |
− | {{tp|p=32579067|t=2020. In Vivo Expressed Biologics for Infectious Disease Prophylaxis: Rapid Delivery of DNA-Based Antiviral Antibodies.|pdf=|usr=010}}
| + | |
− | {{tp|p=32562594|t=2020. Pregnant Women in Trials of COVID-19: A Critical Time to Consider Ethical Frameworks of Inclusion in Clinical Trials.|pdf=|usr=010}}
| + | |
− | {{tp|p=32548679|t=2020. Calling for an exponential escalation scheme in vaccine development for COVID-19.|pdf=|usr=010}}
| + | |
− | {{tp|p=32591957|t=2020. Once we have it, will we use it? A European survey on willingness to be vaccinated against COVID-19.|pdf=|usr=010}}
| + | |
− | {{tp|p=32561291|t=2020. Endoplasmic reticulum as a potential therapeutic target for covid-19 infection management?|pdf=|usr=010}}
| + | |
− | {{tp|p=32554535|t=2020. Potential role of memantine in the prevention and treatment of COVID-19: its antagonism of nicotinic acetylcholine receptors (nAChR) and beyond.|pdf=|usr=010}}
| + | |
− | {{tp|p=32589055|t=2020. Vesicular drug-delivery systems as theranostics in COVID-19.|pdf=|usr=010}}
| + | |
− | {{tp|p=32564623|t=2020. Tackling SARS-CoV-2: proposed targets and repurposed drugs.|pdf=|usr=010}}
| + | |
− | {{tp|p=32578073|t=2020. Elderly at time of COronaVIrus disease 2019 (COVID-19): possible role of immunosenescence and malnutrition.|pdf=|usr=010}}
| + | |
− | {{tp|p=32577840|t=2020. Introduction: microbes, networks, knowledge-disease ecology and emerging infectious diseases in time of COVID-19.|pdf=|usr=010}}
| + | |
− | {{tp|p=32544304|t=2020. Antiretroviral HIV drugs in COVID-19 research: promises and risks. An opinion piece.|pdf=|usr=010}}
| + | |
− | {{tp|p=32591003|t=2020. Application of CRISPR/Cas9 to human-induced pluripotent stem cells: from gene editing to drug discovery.|pdf=|usr=010}}
| + | |
− | {{tp|p=32546029|t=2020. Case report: use of lenzilumab and tocilizumab for the treatment of coronavirus disease 2019.|pdf=|usr=010}}
| + | |
− | {{tp|p=32565362|t=2020. Comparative analysis of SARS-CoV-2 receptor ACE2 expression in multiple solid tumors and matched non-diseased tissues.|pdf=|usr=010}}
| + | |
− | {{tp|p=32588335|t=2020. COVID-19, equipoise and observational studies: a reminder of forgotten issues.|pdf=|usr=010}}
| + | |
− | {{tp|p=32557206|t=2020. Rapid radiological improvement of COVID-19 pneumonia after treatment with tocilizumab.|pdf=|usr=010}}
| + | |
− | {{tp|p=32582401|t=2020. Therapeutic potential of mesenchymal stem cells and their exosomes in severe novel coronavirus disease 2019 (COVID-19) cases.|pdf=|usr=010}}
| + | |
− | {{tp|p=32582400|t=2020. Steps towards COVID-19 suppression.|pdf=|usr=010}}
| + | |
− | {{tp|p=32585611|t=2020. Potential adjuvants for the development of a SARS-CoV-2 vaccine based on experimental results from similar coronaviruses.|pdf=|usr=010}}
| + | |
− | {{tp|p=32565195|t=2020. Chloroquine cardiac effects and toxicity.A short update.|pdf=|usr=010}}
| + | |
− | {{tp|p=32585284|t=2020. Therapeutic Plasma Exchange in Adults with Severe COVID-19 Infection.|pdf=|usr=010}}
| + | |
− | {{tp|p=32579907|t=2020. Paromomycin: a potential dual targeted drug effectively inhibits both Spike (S1) and Main Protease of COVID-19.|pdf=|usr=010}}
| + | |
− | {{tp|p=32585194|t=2020. Convalescent plasma therapy in the treatment of COVID-19: Some considerations: Correspondence.|pdf=|usr=010}}
| + | |
− | {{tp|p=32592113|t=2020. Potential role of incretins in diabetes and COVID-19 infection: a hypothesis worth exploring.|pdf=|usr=010}}
| + | |
− | {{tp|p=32564289|t=2020. The SARS-CoV-2 receptor, ACE-2, is expressed on many different cell types: implications for ACE-inhibitor- and angiotensin II receptor blocker-based cardiovascular therapies: comment.|pdf=|usr=010}}
| + | |
− | {{tp|p=32572516|t=2020. Remdesivir bei Patienten mit COVID-19.|pdf=|usr=010}}
| + | |
− | {{tp|p=32588377|t=2020. Corticosteroids in diabetes patients infected with COVID-19.|pdf=|usr=010}}
| + | |
− | {{tp|p=32583443|t=2020. Letter: intestinal inflammation, COVID-19 and gastrointestinal ACE2-exploring RAS inhibitors-authors' reply.|pdf=|usr=010}}
| + | |
− | {{tp|p=32578215|t=2020. Could Anti-Tubercular Vaccination Protect Against Covid-19 Infection?|pdf=|usr=010}}
| + | |
− | {{tp|p=32552021|t=2020. From "Infodemics" to Health Promotion: A Novel Framework for the Role of Social Media in Public Health.|pdf=|usr=010}}
| + | |
− | {{tp|p=32579022|t=2020. Lung Mechanics in COVID-19 Resemble RDS not ARDS: Could Surfactant be a Treatment?|pdf=|usr=010}}
| + | |
− | {{tp|p=32579020|t=2020. Treatment of COVID-19 by Inhaled NO to Reduce Shunt?|pdf=|usr=010}}
| + | |
− | {{tp|p=32551560|t=2020. Discovery of Aptamers Targeting Receptor-Binding Domain of the SARS-CoV-2 Spike Glycoprotein.|pdf=|usr=010}}
| + | |
− | {{tp|p=32585180|t=2020. Use of inhaled corticosteroids in asthma and COVID-19 : Keep calm and carry on.|pdf=|usr=010}}
| + | |
− | {{tp|p=32539520|t=2020. In COVID-19, adding lopinavir-ritonavir to usual care did not shorten time to clinical improvement.|pdf=|usr=010}}
| + | |
− | {{tp|p=32561608|t=2020. Role of antimalarials in COVID-19: observational data from a cohort of rheumatic patients.|pdf=|usr=010}}
| + | |
− | {{tp|p=32574109|t=2020. Structural Basis of the SARS-CoV-2/SARS-CoV Receptor Binding and Small-Molecule Blockers as Potential Therapeutics.|pdf=|usr=010}}
| + | |
− | {{tp|p=32589165|t=2020. SARS-CoV-2 and HIV protease inhibitors: why lopinavir/ritonavir will not work for COVID-19 infection.|pdf=|usr=010}}
| + | |
− | {{tp|p=32551883|t=2020. COVID-19 and the Drug Repurposing Tsunami.|pdf=|usr=010}}
| + | |
− | {{tp|p=32573724|t=2020. Improved Clinical Symptoms and Mortality on Severe/Critical COVID-19 Patients Utilizing Convalescent Plasma Transfusion.|pdf=|usr=010}}
| + | |
− | {{tp|p=32559767|t=2020. Use of Convalescent Plasma in Hospitalized Patients with Covid-19 - Case Series.|pdf=|usr=010}}
| + | |
− | {{tp|p=32576548|t=2020. Covid-19: Demand for dexamethasone surges as RECOVERY trial publishes preprint.|pdf=|usr=010}}
| + | |
− | {{tp|p=32546467|t=2020. Covid-19: Low dose steroid cuts death in ventilated patients by one third, trial finds.|pdf=|usr=010}}
| + | |
− | {{tp|p=32540958|t=2020. Hydroxychloroquine for covid-19: the end of the line?|pdf=|usr=010}}
| + | |
− | {{tp|p=32556143|t=2020. Compassionate use of hydroxychloroquine in clinical practice for patients with mild to severe Covid-19 in a French university hospital.|pdf=|usr=010}}
| + | |
− | {{tp|p=32548616|t=2020. Corticosteroids in patients with COVID-19: what about the control group?|pdf=|usr=010}}
| + | |
− | {{tp|p=32588427|t=2020. QT interval prolongation under hydroxychloroquine/ azithromycin association for inpatients with SARS-CoV-2 lower respiratory tract infection.|pdf=|usr=010}}
| + | |
− | {{tp|p=32589775|t=2020. Safety, Tolerability, and Pharmacokinetics of Remdesivir, an Antiviral for Treatment of COVID-19, in Healthy Subjects.|pdf=|usr=010}}
| + | |
− | {{tp|p=32552642|t=2020. Facts and myths: Efficacies of repurposing chloroquine and hydroxychloroquine for the treatment of COVID-19.|pdf=|usr=010}}
| + | |
− | {{tp|p=32584431|t=2020. Colchicin Treatment of Covid-19 Presenting With Cutaneous Rash and Myopericarditis.|pdf=|usr=010}}
| + | |
− | {{tp|p=32562762|t=2020. SGLT2 inhibition during the COVID-19 epidemic: Friend or foe?|pdf=|usr=010}}
| + | |
− | {{tp|p=32592507|t=2020. Hydroxychloroquine, COVID-19 and diabetes. Why it is a different story.|pdf=|usr=010}}
| + | |
− | {{tp|p=32588937|t=2020. Adjustments in analyses of vitamin D status, allowing for vitamin D determinants, for Covid-19 risks.|pdf=|usr=010}}
| + | |
− | {{tp|p=32559771|t=2020. The Battle against COVID 19 Pandemic: What we Need to Know Before we "Test Fire" Ivermectin.|pdf=|usr=010}}
| + | |
− | {{tp|p=32588530|t=2020. RNA to the rescue: RNA is one of the most promising targets for drug development given its wide variety of uses.|pdf=|usr=010}}
| + | |
− | {{tp|p=32567239|t=2020. Advantages of Using Lotteries to Select Participants for High-Demand Covid-19 Treatment Trials.|pdf=|usr=010}}
| + | |
− | {{tp|p=32543297|t=2020. Why do SARS-COV vaccines not exist? The pharma scientific intelligence and business model must be revisited!|pdf=|usr=010}}
| + | |
− | {{tp|p=32574081|t=2020. Can nanotechnology help in the fight against COVID-19?|pdf=|usr=010}}
| + | |
− | {{tp|p=32552044|t=2020. Repurposing minocycline for COVID-19 management: mechanisms, opportunities, and challenges.|pdf=|usr=010}}
| + | |
− | {{tp|p=32576053|t=2020. Opioids/cannabinoids as a potential therapeutic approach in COVID-19 patients.|pdf=|usr=010}}
| + | |
− | {{tp|p=32553760|t=2020. TNFalpha-antagonist use and mucosal inflammation are associated with increased intestinal expression of SARS-CoV-2 host protease TMPRSS2 in patients with inflammatory bowel disease.|pdf=|usr=010}}
| + | |
− | {{tp|p=32553757|t=2020. Aminosalicylates and COVID-19: Facts or Coincidences?|pdf=|usr=010}}
| + | |
− | {{tp|p=32554621|t=2020. Infliximab for severe ulcerative colitis and subsequent SARS-CoV-2 pneumonia: a stone for two birds.|pdf=|usr=010}}
| + | |
| | | |
− | {{tp|p=32557648|t=2020. Vaccine development and therapeutic design for 2019-nCoV/SARS-CoV-2: Challenges and chances.|pdf=|usr=010}}
| + | ======================================================================================= |
− | {{tp|p=32557541|t=2020. A Comprehensive Review on Tocilizumab in COVID-19 Acute Respiratory Distress Syndrome.|pdf=|usr=010}}
| + | |
− | {{tp|p=32561274|t=2020. In silico prediction of potential inhibitors for the Main protease of SARS-CoV-2 using molecular docking and dynamics simulation based drug-repurposing.|pdf=|usr=010}}
| + | |
− | {{tp|p=32567262|t=2020. A Case of Breakthrough COVID-19 during Hydroxychloroquine Maintenance.|pdf=|usr=010}}
| + | |
− | {{tp|p=32537956|t=2020. Uncertainty about the Efficacy of Remdesivir on COVID-19.|pdf=|usr=010}}
| + | |
− | {{tp|p=32539378|t=2020. Inhibitors of SARS-CoV-2 Entry: Current and Future Opportunities.|pdf=|usr=010}}
| + | |
− | {{tp|p=32562701|t=2020. Apelin-potential therapy for COVID-19?|pdf=|usr=010}}
| + | |
− | {{tp|p=32588188|t=2020. Comment on "Smooth or Risky Revisit of an Old Malaria Drug for COVID-19?"|pdf=|usr=010}}
| + | |
− | {{tp|p=32565096|t=2020. Anticipating SARS-CoV-2 Vaccine Testing, Licensure, and Recommendations for Use.|pdf=|usr=010}}
| + | |
− | {{tp|p=32543196|t=2020. Repositioning of 8565 Existing Drugs for COVID-19.|pdf=|usr=010}}
| + | |
− | {{tp|p=32586380|t=2020. Advanced bioinformatics rapidly identifies existing therapeutics for patients with coronavirus disease-2019 (COVID-19).|pdf=|usr=010}}
| + | |
− | {{tp|p=32591466|t=2020. SARS-CoV-2 vaccines: 'Warp Speed' needs mind melds not warped minds.|pdf=|usr=010}}
| + | |
− | {{tp|p=32589146|t=2020. Statistical Issues and Lessons Learned from COVID-19 Clinical Trials with Lopinavir-Ritonavir and Remdesivir.|pdf=|usr=010}}
| + | |
− | {{tp|p=32536150|t=2020. Lopinavir-ritonavir versus hydroxychloroquine for viral clearance and clinical improvement in patients with mild to moderate coronavirus disease 2019.|pdf=|usr=010}}
| + | |
− | {{tp|p=32553190|t=2020. Appropriate selection of convalescent plasma donors for COVID-19.|pdf=|usr=010}}
| + | |
− | {{tp|p=32555367|t=2020. Regional BCG vaccination policy in former East- and West Germany may impact on both severity of SARS-CoV-2 and incidence of childhood leukemia.|pdf=|usr=010}}
| + | |
− | {{tp|p=32555296|t=2020. Ruxolitinib for the treatment of SARS-CoV-2 induced acute respiratory distress syndrome (ARDS).|pdf=|usr=010}}
| + | |
− | {{tp|p=32553928|t=2020. Potential inhibitors of the interaction between ACE2 and SARS-CoV-2 (RBD), to develop a drug.|pdf=|usr=010}}
| + | |
− | {{tp|p=32561657|t=2020. Could an Unrelated Live Attenuated Vaccine Serve as a Preventive Measure To Dampen Septic Inflammation Associated with COVID-19 Infection?|pdf=|usr=010}}
| + | |
− | {{tp|p=32590324|t=2020. Targeting adenosinergic pathway and adenosine A2A receptor signaling for the treatment of COVID-19: A hypothesis.|pdf=|usr=010}}
| + | |
− | {{tp|p=32575019|t=2020. Pirfenidone: A novel hypothetical treatment for COVID-19.|pdf=|usr=010}}
| + | |
− | {{tp|p=32558640|t=2020. Cibler la protease majeure du SARS-CoV-2 pour fabriquer un medicament efficace contre ce coronavirus.|pdf=|usr=010}}
| + | |
− | {{tp|p=32590819|t=2020. Critically ill patients with COVID-19 with ECMO and artificial liver plasma exchange: A retrospective study.|pdf=|usr=010}}
| + | |
− | {{tp|p=32574789|t=2020. Predictive factors of mortality in patients treated with tocilizumab for acute respiratory distress syndrome related to coronavirus disease 2019 (COVID-19).|pdf=|usr=010}}
| + | |
− | {{tp|p=32570850|t=2020. Microbiota Modulating Nutritional Approaches to Countering the Effects of Viral Respiratory Infections Including SARS-CoV-2 through Promoting Metabolic and Immune Fitness with Probiotics and Plant Bioactives.|pdf=|usr=010}}
| + | |
− | {{tp|p=32546125|t=2020. Erythropoietin as candidate for supportive treatment of severe COVID-19.|pdf=|usr=010}}
| + | |
− | {{tp|p=32560203|t=2020. Quinoxaline Derivatives as Antiviral Agents: A Systematic Review.|pdf=|usr=010}}
| + | |
− | {{tp|p=32551679|t=2020. Cellular Nanosponges Inhibit SARS-CoV-2 Infectivity.|pdf=|usr=010}}
| + | |
− | {{tp|p=32557405|t=2020. Recognition of Natural Products as Potential Inhibitors of COVID-19 Main Protease (Mpro): In-Silico Evidences.|pdf=|usr=010}}
| + | |
− | {{tp|p=32576980|t=2020. GM-CSF-based treatments in COVID-19: reconciling opposing therapeutic approaches.|pdf=|usr=010}}
| + | |
− | {{tp|p=32572246|t=2020. Preclinical data from SARS-CoV-2 mRNA vaccine.|pdf=|usr=010}}
| + | |
− | {{tp|p=32555401|t=2020. Optimizing safety surveillance for COVID-19 vaccines.|pdf=|usr=010}}
| + | |
− | {{tp|p=32587103|t=2020. Extending rituximab dosing intervals in patients with MS during the COVID-19 pandemic and beyond?|pdf=|usr=010}}
| + | |
− | {{tp|p=32590117|t=2020. Nitric oxide dosed in short bursts at high concentrations may protect against Covid 19.|pdf=|usr=010}}
| + | |
− | {{tp|p=32405159|t=2020. May statins and PCSK9 inhibitors be protective from COVID-19 in familial hypercholesterolemia subjects?|pdf=|usr=010}}
| + | |
− | {{tp|p=32564413|t=2020. Is 0.5% Hydrogen Peroxide Effective against SARS-CoV-2?|pdf=|usr=010}}
| + | |
− | {{tp|p=32587806|t=2020. A potential role for Galectin-3 inhibitors in the treatment of COVID-19.|pdf=|usr=010}}
| + | |
− | {{tp|p=32590099|t=2020. The database-based strategy may overstate the potential effects of traditional Chinese medicine against COVID-19.|pdf=|usr=010}}
| + | |
− | {{tp|p=32569819|t=2020. Network pharmacological approach for elucidating the mechanisms of traditional Chinese medicine in treating COVID-19 patients.|pdf=|usr=010}}
| + | |
− | {{tp|p=32565309|t=2020. Effect of combination antiviral therapy on hematological profiles in 151 adults hospitalized with severe coronavirus disease 2019.|pdf=|usr=010}}
| + | |
− | {{tp|p=32592716|t=2020. Glycyrrhizin: An alternative drug for the treatment of COVID-19 infection and the associated respiratory syndrome?|pdf=|usr=010}}
| + | |
− | {{tp|p=32562826|t=2020. Therapeutic potential of resveratrol against emerging respiratory viral infections.|pdf=|usr=010}}
| + | |
− | {{tp|p=32542785|t=2020. Baricitinib: A review of pharmacology, safety and emerging clinical experience in COVID-19.|pdf=|usr=010}}
| + | |
− | {{tp|p=32592911|t=2020. Does PDT have potential in the treatment of COVID 19 patients?|pdf=|usr=010}}
| + | |
− | {{tp|p=32585401|t=2020. Optical theranostics and treatment dosimetry for COVID-19 lung complications: towards increasing the survival rate of vulnerable populations.|pdf=|usr=010}}
| + | |
− | {{tp|p=32585400|t=2020. Ultraviolet-based biophotonic technologies for control and prevention of COVID-19, SARS and related disorders.|pdf=|usr=010}}
| + | |
− | {{tp|p=32561979|t=2020. Synergistic antiviral effects against SARS-CoV-2 by plant-based molecules.|pdf=|usr=010}}
| + | |
− | {{tp|p=32575476|t=2020. Geranium and Lemon Essential Oils and Their Active Compounds Downregulate Angiotensin-Converting Enzyme 2 (ACE2), a SARS-CoV-2 Spike Receptor-Binding Domain, in Epithelial Cells.|pdf=|usr=010}}
| + | |
− | {{tp|p=32569450|t=2020. Ritonavir/Lopinavir and Its Potential Interactions With Psychiatric Medications: A COVID-19 Perspective.|pdf=|usr=010}}
| + | |
− | {{tp|p=32570995|t=2020. Short-Term Dexamethasone in Sars-CoV-2 Patients.|pdf=|usr=010}}
| + | |
− | {{tp|p=32552811|t=2020. E-cigarette-induced pulmonary inflammation and dysregulated repair are mediated by nAChR alpha7 receptor: role of nAChR alpha7 in SARS-CoV-2 Covid-19 ACE2 receptor regulation.|pdf=|usr=010}}
| + | |
− | {{tp|p=32558034|t=2020. National policies for paediatric universal BCG vaccination were associated with decreased mortality due to COVID-19.|pdf=|usr=010}}
| + | |
− | {{tp|p=32557955|t=2020. Targeting the interleukin-17 pathway to prevent acute respiratory distress syndrome associated with SARS-CoV-2 infection.|pdf=|usr=010}}
| + | |
− | {{tp|p=32571730|t=2020. Anakinra, una alternativa potencial en el tratamiento de la infeccion respiratoria grave por SARS-CoV-2 refractaria a tocilizumab.|pdf=|usr=010}}
| + | |
− | {{tp|p=32579014|t=2020. Systemic inflammatory response and thrombosis due to alterations in the gut microbiota in COVID-19.|pdf=|usr=010}}
| + | |
− | {{tp|p=32579012|t=2020. COVID-19. Immunothrombosis and the gastrointestinal tract.|pdf=|usr=010}}
| + | |
− | {{tp|p=32558210|t=2020. Clearance of chloroquine and hydroxychloroquine by the Seraph(R) 100 Microbind(R) Affinity blood filter - approved for the treatment of COVID-19 patients.|pdf=|usr=010}}
| + | |
− | {{tp|p=32568026|t=2020. Targeting infectious Coronavirus Disease 2019 (COVID-19) with Artificial Intelligence (AI) applications: Evidence based opinion.|pdf=|usr=010}}
| + | |
− | {{tp|p=32593196|t=2020. The Another Side of COVID-19 in Alzheimer's Disease Patients: Drug-Drug Interactions.|pdf=|usr=010}}
| + | |
− | {{tp|p=32579043|t=2020. Is there any supportive evidence for low dose radiotherapy for COVID-19 pneumonia?|pdf=|usr=010}}
| + | |
− | {{tp|p=32589449|t=2020. Current State of Research About Chinese Herbal Medicines (CHM) for the Treatment of Coronavirus Disease 2019 (COVID-19): A Scoping Review.|pdf=|usr=010}}
| + | |
− | {{tp|p=32579021|t=2020. Meditation and Yoga Practices as Potential Adjunctive Treatment of SARS-CoV-2 Infection and COVID-19: A Brief Overview of Key Subjects.|pdf=|usr=010}}
| + | |
− | {{tp|p=32591771|t=2020. The challenging pathway towards the identification of SARS-CoV-2/COVID-19 therapeutics.|pdf=|usr=010}}
| + | |
− | {{tp|p=32556272|t=2020. Stopping lopinavir/ritonavir in COVID-19 patients: duration of the drug interacting effect.|pdf=|usr=010}}
| + | |
− | {{tp|p=32586154|t=2020. Montelukast's ability to fight COVID-19 infection.|pdf=|usr=010}}
| + | |
− | {{tp|p=32583729|t=2020. Immunoinformatics study to search epitopes of spike glycoprotein from SARS-CoV-2 as potential vaccine.|pdf=|usr=010}}
| + | |
− | {{tp|p=32579065|t=2020. Binding insight of clinically oriented drug famotidine with the identified potential target of SARS-CoV-2.|pdf=|usr=010}}
| + | |
− | {{tp|p=32579064|t=2020. In-silico investigation of phytochemicals from Asparagus racemosus as plausible antiviral agent in COVID-19.|pdf=|usr=010}}
| + | |
− | {{tp|p=32579061|t=2020. Pharmacoinformatics and molecular dynamics simulation studies reveal potential covalent and FDA-approved inhibitors of SARS-CoV-2 main protease 3CL(pro).|pdf=|usr=010}}
| + | |
− | {{tp|p=32579059|t=2020. Screening of Chloroquine, Hydroxychloroquine and its derivatives for their binding affinity to multiple SARS-CoV-2 protein drug targets.|pdf=|usr=010}}
| + | |
− | {{tp|p=32573355|t=2020. Targeting SARS-COV-2 non-structural protein 16: a virtual drug repurposing study.|pdf=|usr=010}}
| + | |
− | {{tp|p=32573351|t=2020. Ethnomedicines of Indian origin for combating COVID-19 infection by hampering the viral replication: using structure-based drug discovery approach.|pdf=|usr=010}}
| + | |
− | {{tp|p=32571168|t=2020. Drug repurposing against SARS-CoV-2 using E-pharmacophore based virtual screening, molecular docking and molecular dynamics with main protease as the target.|pdf=|usr=010}}
| + | |
− | {{tp|p=32568620|t=2020. Remdesivir (GS-5734) as a therapeutic option of 2019-nCOV main protease - in silico approach.|pdf=|usr=010}}
| + | |
− | {{tp|p=32568618|t=2020. Chemical-informatics approach to COVID-19 drug discovery: Monte Carlo based QSAR, virtual screening and molecular docking study of some in-house molecules as papain-like protease (PLpro) inhibitors.|pdf=|usr=010}}
| + | |
− | {{tp|p=32568613|t=2020. Evaluation of green tea polyphenols as novel corona virus (SARS CoV-2) main protease (Mpro) inhibitors - an in silico docking and molecular dynamics simulation study.|pdf=|usr=010}}
| + | |
− | {{tp|p=32568013|t=2020. Virtual screening and dynamics of potential inhibitors targeting RNA binding domain of nucleocapsid phosphoprotein from SARS-CoV-2.|pdf=|usr=010}}
| + | |
− | {{tp|p=32568012|t=2020. Sars-cov-2 host entry and replication inhibitors from Indian ginseng: an in-silico approach.|pdf=|usr=010}}
| + | |
− | {{tp|p=32567995|t=2020. Promising inhibitors of main protease of novel corona virus to prevent the spread of COVID-19 using docking and molecular dynamics simulation.|pdf=|usr=010}}
| + | |
− | {{tp|p=32567989|t=2020. In silico identification of potential inhibitors from Cinnamon against main protease and spike glycoprotein of SARS CoV-2.|pdf=|usr=010}}
| + | |
− | {{tp|p=32567979|t=2020. Structure-based virtual screening and molecular dynamics simulation of SARS-CoV-2 Guanine-N7 methyltransferase (nsp14) for identifying antiviral inhibitors against COVID-19.|pdf=|usr=010}}
| + | |
− | {{tp|p=32567501|t=2020. Constituents of buriti oil (Mauritia flexuosa L.) like inhibitors of the SARS-Coronavirus main peptidase: an investigation by docking and molecular dynamics.|pdf=|usr=010}}
| + | |
− | {{tp|p=32567487|t=2020. nCOV-19 peptides mass fingerprinting identification, binding, and blocking of inhibitors flavonoids and anthraquinone of Moringa oleifera and hydroxychloroquine.|pdf=|usr=010}}
| + | |
− | {{tp|p=32568969|t=2020. Pharmacological development of the potential adjuvant therapeutic agents against coronavirus disease 2019.|pdf=|usr=010}}
| + | |
− | {{tp|p=32579707|t=2020. Clinical pharmacology considerations for developing small molecule treatments for COVID-19.|pdf=|usr=010}}
| + | |
− | {{tp|p=32571115|t=2020. Cutaneous side effects of hydroxychloroquine in health care workers in a COVID referral hospital - implications for clinical practice.|pdf=|usr=010}}
| + | |
− | {{tp|p=32538738|t=2020. Molecular simulation of SARS-CoV-2 spike protein binding to pangolin ACE2 or human ACE2 natural variants reveals altered susceptibility to infection.|pdf=|usr=010}}
| + | |
− | {{tp|p=32584243|t=2020. Empiric Therapies for COVID-19: Destined to Fail by Ignoring the Lessons of History.|pdf=|usr=010}}
| + | |
− | {{tp|p=32591393|t=2020. A Potently Neutralizing Antibody Protects Mice against SARS-CoV-2 Infection.|pdf=|usr=010}}
| + | |
− | {{tp|p=32559452|t=2020. Hydroxychloroquine use in COVID-19: what is the basis for baseline tests?|pdf=|usr=010}}
| + | |
− | {{tp|p=32559419|t=2020. Therapeutic blockade of granulocyte macrophage colony-stimulating factor in COVID-19-associated hyperinflammation: challenges and opportunities.|pdf=|usr=010}}
| + | |
− | {{tp|p=32546047|t=2020. Ig-like ACE2 protein therapeutics: A revival in development during the COVID-19 pandemic.|pdf=|usr=010}}
| + | |
− | {{tp|p=32574572|t=2020. Letter to the editor: Immunomodulation by phsphodiesterase-4 inhibitor in COVID-19 patients.|pdf=|usr=010}}
| + | |
− | {{tp|p=32579258|t=2020. Antiviral activities of mycophenolic acid and IMD-0354 against SARS-CoV-2.|pdf=|usr=010}}
| + | |
− | {{tp|p=32578354|t=2020. Obesity and COVID-19: The mTOR pathway as a possible culprit.|pdf=|usr=010}}
| + | |
− | {{tp|p=32554811|t=2020. Infant With SARS-CoV-2 Infection Causing Severe Lung Disease Treated With Remdesivir.|pdf=|usr=010}}
| + | |
− | {{tp|p=32588453|t=2020. Covid-19 and Thymoquinone: Connecting the Dots.|pdf=|usr=010}}
| + | |
− | {{tp|p=32552307|t=2020. A rationale for blocking thromboinflammation in COVID-19 with Btk inhibitors.|pdf=|usr=010}}
| + | |
− | {{tp|p=32564047|t=2020. Chloroquine in controlling biological infections.|pdf=|usr=010}}
| + | |
− | {{tp|p=32569363|t=2020. Outcomes in Patients with Severe COVID-19 Disease Treated with Tocilizumab - A Case- Controlled Study.|pdf=|usr=010}}
| + | |
− | {{tp|p=32584474|t=2020. A brief review of interplay between vitamin D and angiotensin-converting enzyme 2: Implications for a potential treatment for COVID-19.|pdf=|usr=010}}
| + | |
− | {{tp|p=32568376|t=2020. Successful treatment of severe COVID-19 with subcutaneous anakinra as a sole treatment.|pdf=|usr=010}}
| + | |
− | {{tp|p=32556278|t=2020. Real-life experience of tocilizumab use in COVID-19 patients.|pdf=|usr=010}}
| + | |
− | {{tp|p=32543892|t=2020. Development of a simple, interpretable and easily transferable QSAR model for quick screening antiviral databases in search of novel 3C-like protease (3CLpro) enzyme inhibitors against SARS-CoV diseases.|pdf=|usr=010}}
| + | |
− | {{tp|p=32590699|t=2020. ACTH 1-24 and other melanocortins for COVID-19 treatment.|pdf=|usr=010}}
| + | |
− | {{tp|p=32585765|t=2020. A Case of Successful Treatment of Severe COVID-19 Pneumonia with Favipiravir and Tocilizumab in Post-kidney Transplant Recipient.|pdf=|usr=010}}
| + | |
− | {{tp|p=32573990|t=2020. Heart Transplant Recipient Patient with COVID-19 Treated with Tocilizumab.|pdf=|usr=010}}
| + | |
− | {{tp|p=32584762|t=2020. [Rationales for using JAK 1/2 inhibitors in severely afflicted patients with COVID-19 pneumonia].|pdf=|usr=010}}
| + | |
− | {{tp|p=32591367|t=2020. Is the production of a Covid-19 vaccine using transformed Pasteurella plausible?|pdf=|usr=010}}
| + | |
− | {{tp|p=32542847|t=2020. Clinical use of Convalescent Plasma in the COVID-19 pandemic; a transfusion-focussed gap analysis with recommendations for future research priorities.|pdf=|usr=010}}
| + | |