|
|
(51 dazwischenliegende Versionen von einem Benutzer werden nicht angezeigt) |
Zeile 1: |
Zeile 1: |
− | {{pnc}} | + | {{gohome}} |
| + | {{ft|P}} |
| + | '''CHERRYPICKING STUDIES IS NOT SCIENCE |
| + | {{qt|Reviews on covid drug development}} |
| | | |
− | current items will be put into the subsections.
| |
− | subsections with contents are marked ''with content''.
| |
− | the others are pending data.
| |
| | | |
− | *[[reviews on covid drug development]] ''with content'' | + | *'''[[scouting ideas]]''' |
− | *[[scouting ideas]]
| + | |
| | | |
− | *[[Patients on biologicals]] | + | *'''[[PHA Biologicals]]''' |
− | *[[HMGB1, RAGE]]
| + | |
− | *[[pre-Interleukin 6]] ''with content''
| + | |
− | *[[post-Interleukin 6]]
| + | |
− | *[[pre-TNFalpha]]
| + | |
− | *[[post-TNFalpha]]
| + | |
− | *[[pre-Interleukin 17]]
| + | |
− | *[[post-Interleukin 17]]
| + | |
− | *[[pre-Interleukin 1]]
| + | |
− | *[[post-Interleukin 1]]
| + | |
− | *[[Inflammasome]]
| + | |
− | *[[other anti-inflammatory]]
| + | |
− | *[[NK-kappaB]]
| + | |
− | *[[STAT 3]]
| + | |
− | *[[JAK Janus Kinase]]
| + | |
− | *[[Corticosteroids]]
| + | |
− | *[[Cytokine absorbers]]
| + | |
− | *[[Target Complement system]]
| + | |
− | *[[Target Extracellular traps]]
| + | |
− | *[[Anticoagulant in covid19]]
| + | |
− | *[[Antioxidants]]
| + | |
− | *[[Stem cells]]
| + | |
− | *[[MDSC cells]]
| + | |
| | | |
| + | *'''[[PHA conventional pharmacology]]''' |
| | | |
| + | *'''[[PHA retargeted compounds]]''' |
| | | |
− | *[[other single compounds]] | + | *'''[[PHA antivirals by mechanism]]''' |
− | *[[Retargeted single compounds]]
| + | |
− | *[[Hydroxychloroquine]] ''with content''
| + | |
− | *
| + | |
| | | |
− | *[[other antiviral compounds]] | + | *'''[[PHA pharmacophore by screened target]]''' |
− | *[[AV Remdesivir]]
| + | |
− | *[[AV Lopinavir]]
| + | |
− | *[[AV Ivermectin]]
| + | |
| | | |
− | *[[Target ACE2, Spike protein]] | + | *'''[[PHA ImmunoNutrients]] |
− | *[[Target TMPRSS2, Spike protein]]
| + | |
| | | |
| + | *'''[[PHA compl altern natural]]''' |
| | | |
| + | *'''[[PHA within indications compounds]]''' |
| | | |
− | *[[Interferons]] | + | *'''[[PHA Serum products]]''' |
| | | |
| + | *'''[[PHA Vaccination]]''' |
| | | |
| + | PHA related options: |
| | | |
− | *[[Vitamin D]]
| |
− |
| |
− | *[[Statins]]
| |
− | *[[Anorganic nutrients Magnesium]]
| |
− | *[[Anorganic nutrients Selenium]]
| |
− | *[[Anorganic nutrients Zinc]]
| |
− |
| |
− |
| |
− |
| |
− | *[[Traditional Chinese Medicine]]
| |
− | *[[Natural compounds]]
| |
− |
| |
− | *[[Antidiabetic compounds, any]]
| |
− | *[[RSP - On RAS drugs]]
| |
− |
| |
− | *[[Reconvalescent blood products, Passive vaccine]] ''with content''
| |
− | *[[Plasmapheresis]]
| |
− |
| |
− | *[[Immunodeviation]] e.g. by adjuvants or other vaccinations
| |
| *[[Radiation therapy]] | | *[[Radiation therapy]] |
− | *[[Active vaccine]] ''with content'' | + | *[[Phototherapy]] |
− | | + | *[[Electric fields]] |
− | | + | *[[Treatment other concepts]] |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | '''resilience enhancement'''
| + | |
− | {{tp|p=32229705|t=2020. Geroprotective and senoremediative strategies to reduce the comorbidity, infection rates, severity, and lethality in gerophilic and gerolavic infections |pdf=|usr=}}
| + | |
− | {{tp|p=32311498|t=ä. The impact of nutrition on COVID-19 susceptibility and long-term consequences |pdf=|usr=}}
| + | |
− | {{tp|p=32276453|t=2020. Exploring the Relevance of Senotherapeutics for the Current SARS-CoV-2 Emergency and Similar Future Global Health Threats |pdf=|usr=}}
| + | |
− | | + | |
− | '''psychoneuroimmunology'''
| + | |
− | {{tp|p=32234338|t=ä. Using psychoneuroimmunity against COVID-19 |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | '''Exercise'''
| + | |
− | {{tp|p=32311497|t=ä. The immunological case for staying active during the COVID-19 pandemic |pdf=|usr=}}
| + | |
− | | + | |
− | '''Topical agents''' opening up the world of nano...
| + | |
− | *[https://www.dailymail.co.uk/sciencetech/article-8315269/Commercial-mouthwash-prevent-COVID-19-transmission-scientists-say.html on mouth rinses] | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | ----
| + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | {{tp|p=32305181|t=ä. ESPEN expert statements and practical guidance for nutritional management of individuals with SARS-CoV-2 infection |pdf=|usr=}}
| + | |
− | {{tp|p=32360083|t=ä. Modulation of Hb-O2 affinity to improve hypoxemia in COVID-19 patients |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=32277367|t=ä. Rheumatologists? perspective on coronavirus disease 19 (COVID-19) and potential therapeutic targets |pdf=|usr=}}
| + | |
− | {{tp|p=32373721|t=2020. Low dose lung radiotherapy for COVID-19 pneumonia The rationale for a cost-effective anti-inflammatory treatment |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | {{tp|p=32318324|t=ä. Depriving Iron Supply to the Virus Represents a Promising Adjuvant Therapeutic Against Viral Survival |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | {{tp|p=32360420|t=ä. Cytokine storm intervention in the early stages of COVID-19 pneumonia |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | | + | |
− | {{tp|p=32335366|t=2020. Can dapagliflozin have a protective effect against COVID-19 infection? A hypothesis |pdf=|usr=}}
| + | |
− | {{tp|p=32333972|t=ä. Letter to the Editor in response to the article ?COVID-19 and diabetes: Can DPP4 inhibition play a role?? |pdf=|usr=}}
| + | |
− | {{tp|p=32333966|t=2020. COVID-19 and diabetes: Is this association driven by the DPP4 receptor? Potential clinical and therapeutic implications |pdf=|usr=}}
| + | |
− | {{tp|p=32333969|t=ä. Response to COVID -19 and Diabetes: Can DPP4 Inhibition Play a Role? ? GLP-1 Might Play One Too |pdf=|usr=}}
| + | |
− | {{tp|p=32283128|t=ä. Should anti-diabetic medications be reconsidered amid COVID-19 pandemic?|pdf=|usr=}} ''on ace2 via adam17, nfkb via dpp4''
| + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | {{tp|p=32325124|t=ä. Vaporization, bioactive formulations and a marine natural product: different perspectives on antivirals |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | {{tp|p=32271462|t=2020. Inositol and pulmonary function Could myo-inositol treatment downregulate inflammation and cytokine release syndrome in SARS-CoV-2?|pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | {{tp|p=32312129|t=2020. The role of additive manufacturing and antimicrobial polymers in the COVID-19 pandemic |pdf=|usr=}}
| + | |
− | {{tp|p=32117569|t=2020. Therapeutic strategies in an outbreak scenario to treat the novel coronavirus originating in Wuhan, China |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | {{tp|p=32247692|t=ä. Faecal-oral transmission of SARS-COV-2: practical implications |pdf=|usr=}}
| + | |
− | {{tp|p=32367287|t=ä. New evidence of SARS-CoV-2 transmission through the ocular surface |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | {{tp|p=32251365|t=ä. Considering mutational meltdown as a potential SARS-CoV-2 treatment strategy |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | {{tp|p=32366728|t=2020. Medical Education During the COVID-19 Pandemic: A Single Institution Experience |pdf=|usr=}}
| + | |
− | {{tp|p=32366726|t=2020. Management of Asthma in Children during COVID-19 Pandemic |pdf=|usr=}}
| + | |
− | {{tp|p=32366725|t=2020. COVID -19 Pandemic: The Challenges for Pediatric Oncology |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | {{tp|p=32283177|t=ä. Coronavirus (COVID-19), First Indication of Efficacy of Gene-Eden-VIR/Novirin in SARS-CoV-2 Infections |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | {{tp|p=32226290|t=2020. Targeting the Endocytic Pathway and Autophagy Process as a Novel Therapeutic Strategy in COVID-19 |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | {{tp|p=32305009|t=ä. Investigating hypothiocyanite against SARS-CoV-2 |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | {{tp|p=32354030|t=2020. Functional Role of Dietary Intervention to Improve the Outcome of COVID-19: A Hypothesis of Work |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | {{tp|p=32336674|t=ä. COVID-19 Emergency Responders in FDA?s Center for Drug Evaluation and Research |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | {{tp|p=32326426|t=2020. COVID-19: A Recommendation to Examine the Effect of Mouthrinses with beta-Cyclodextrin Combined with Citrox in Preventing Infection and Progression |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | {{tp|p=32373322|t=ä. Fighting COVID-19 with water |pdf=|usr=}}''dehydration of mucous glycans''
| + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | {{tp|p=32356251|t=ä. Medical Toxicology and COVID-19: Our Role in a Pandemic |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | {{tp|p=32324533|t=2020. Prevention and therapy of COVID-19 via exogenous estrogen treatment for both male and female patients |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=32291198|t=2020. Impact of Nutrition and Diet on COVID-19 Infection and Implications for Kidney Health and Kidney Disease Management |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | {{tp|p=32339473|t=ä. Probiotics and COVID-19: one size does not fit all |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | *''riociguat?''
| + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | {{tp|p=32344313|t=ä. Can pioglitazone be potentially useful therapeutically in treating patients with covid-19?|pdf=|usr=}}
| + | |
− | {{tp|p=32344312|t=2020. Potential effect of natural and anabolizan steroids in elderly patient with COVID-19 |pdf=|usr=}}
| + | |
− | {{tp|p=32344310|t=2020. Respiratory conditions in coronavirus disease 2019 (COVID-19): Important considerations regarding novel treatment strategies to reduce mortality |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | | + | |
− | {{tp|p=32335456|t=2020. The old but new: Can unfractioned heparin and low molecular weight heparins inhibit proteolytic activation and cellular internalization of SARS-CoV2 by inhibition of host cell proteases?|pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | {{tp|p=32353355|t=ä. Testosterone, a key hormone in the context of COVID-19 pandemic |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | {{tp|p=32255312|t=2020. A possible probiotic (S salivarius K12) approach to improve oral and lung microbiotas and raise defenses against SARS-CoV-2 |pdf=|usr=}}
| + | |
− | {{tp|p=32365556|t=2020. Pharmacological (or Synthetic) and Nutritional Agonists of PPAR-gamma as Candidates for Cytokine Storm Modulation in COVID-19 Disease |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | {{tp|p=32340216|t=2020. Optimal Nutritional Status for a Well-Functioning Immune System Is an Important Factor to Protect against Viral Infections |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=32342019|t=ä. Exercise against SARS-CoV-2 (COVID-19): Does workout intensity matter? (A mini review of some indirect evidence related to obesity) |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | {{tp|p=32307559|t=ä. Management for patients with pediatric surgical disease during the COVID-19 epidemic |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | {{tp|p=32342871|t=ä. Is low dose radiation therapy a potential treatment for COVID-19 pneumonia?|pdf=|usr=}}
| + | |
− | {{tp|p=32342874|t=ä. Low dose radiation therapy for COVID-19 pneumonia: a double-edged sword |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | {{tp|p=32297156|t=ä. Computational Identification of Small Interfering RNA Targets in SARS-CoV-2 |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | {{tp|p=32191676|t=2020. Natural small molecules as inhibitors of coronavirus lipid-dependent attachment to host cells: a possible strategy for reducing SARS-COV-2 infectivity?|pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | {{tp|p=32229155|t=2020. Can Bioactive Lipids Inactivate Coronavirus (COVID-19)?|pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=32282033|t=2020. Initiating adjunct low-dose hydroxyurea therapy for stroke prevention in children with SCA during the COVID-19 pandemic |pdf=|usr=}}
| + | |
− | {{tp|p=32362106|t=2020. Management of conjunctivitis during the COVID-19 pandemic 2020 |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | {{tp|p=32315229|t=2020. COVID-19 and the CRISPR Community Response |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | | + | |
− | {{tp|p=32133962|t=2020. Effective Chemicals against Novel Coronavirus (COVID-19) in China |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | {{tp|p=32227357|t=ä. COVID?19 treatment by repurposing drugs until the vaccine is in sight |pdf=|usr=}}
| + | |
− | {{tp|p=32377559|t=ä. COVID-19: Review of Epidemiology and Potential Treatments Against 2019 Novel Coronavirus |pdf=|usr=}}
| + | |
− | {{tp|p=32374010|t=2020. Are probiotics effective adjuvant therapeutic choice in patients with COVID-19?|pdf=|usr=}}
| + | |
− | {{tp|p=32374009|t=2020. Potential mechanisms by which the oxygen-ozone (O2-O3) therapy could contribute to the treatment against the coronavirus COVID-19 |pdf=|usr=}}
| + | |
− | {{tp|p=32369103|t=ä. Sacubitril/valsartan in COVID-19 patients: the need for trials |pdf=|usr=}}
| + | |
− | {{tp|p=32373994|t=2020. Could host cell receptor alteration prevent SARS-CoV-2 viral entry? - Hype or hope |pdf=|usr=}}
| + | |
− | {{tp|p=32373992|t=2020. MSCs transplantation may be a potential therapeutic strategy for COVID-19 treatment |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=32362193|t=2020. Quadruple therapy for asymptomatic COVID-19 infection patients |pdf=|usr=}}
| + | |
− | {{tp|p=32366131|t=2020. Harnessing the potential of CRISPR-based platforms to advance the field of hospital medicine |pdf=|usr=}}
| + | |
− | {{tp|p=32336007|t=2020. DPP4 inhibition: preventing SARS-CoV-2 infection and/or progression of COVID-19?|pdf=|usr=}}
| + | |
− | {{tp|p=32224164|t=2020. COVID-19 and diabetes: Can DPP4 inhibition play a role?|pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | {{tp|p=32281695|t=2020. Existing bitter medicines for fighting 2019-nCoV-associated infectious diseases |pdf=|usr=}}
| + | |
− | {{tp|p=32379896|t=2020. Knowledge-based structural models of SARS-CoV-2 proteins and their complexes with potential drugs |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=32157732|t=ä. Harnessing the immune system via Fc?R function in immune therapy: a pathway to next?gen mAbs |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=32298218|t=2020. Potential for developing a SARS-CoV receptor-binding domain (RBD) recombinant protein as a heterologous human vaccine against coronavirus infectious disease (COVID)-19 |pdf=|usr=}}
| + | |
− | {{tp|p=32317431|t=2020. Therapeutic opportunities to manage COVID-19/SARS-CoV-2 infection: Present and future |pdf=|usr=}}
| + | |
− | {{tp|p=32370727|t=2020. SARS-CoV-2 & Covid-19: Key-Roles of the Renin-Angiotensin System / Vitamin D Impacting Drug and Vaccine Developments |pdf=|usr=}}
| + | |
− | {{ttp|p=32377694|t=2020. Towards effective COVID19 vaccines: Updates, perspectives and challenges (Review) |pdf=|usr=}}
| + | |
− | {{tp|p=32338559|t=2020. Low dose radiation therapy for COVID-19 pneumonia: is there any supportive evidence?|pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=32310190|t=2020. Coronavirus drugs: Using plasma from recovered patients as a treatment for COVID-19 |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | | + | |
− | {{tp|p=32306822|t=2020. Peptide-like and small-molecule inhibitors against Covid-19 |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | {{tp|p=32364041|t=2020. Using integrated computational approaches to identify safe and rapid treatment for SARS-CoV-2 |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | üüp
| + | |
− | | + | |
− | {{tp|p=32349031|t=2020. Role of Dipeptidyl Peptidase 4 Inhibitors in Diabetic Patients with Coronavirus-19 Infection |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=32379348|t=2020. 3CL hydrolase-based multiepitope peptide vaccine against SARS-CoV-2 using immunoinformatics |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | {{tp|p=32219882|t=ä. Controversial treatments: An updated understanding of the coronavirus disease 2019 |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=32108352|t=ä. Clinical trial analysis of 2019?nCoV therapy registered in China |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | | + | |
− | {{tp|p=32356910|t=2020. Convalescent plasma transfusion for the treatment of COVID-19: Systematic review |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | {{tp|p=32239514|t=ä. Comments on Zhang et al: Clinical trial analysis of 2019?nCoV therapy registered in China |pdf=|usr=}}
| + | |
− | | + | |
− | {{ttp|p=32378064|t=ä. Feasibility of Therapeutic Effects of the Cholinergic Anti-Inflammatory Pathway on COVID-19 Symptoms |pdf=|usr=}}
| + | |
− | {{tp|p=32320059|t=2020. Potential of live pathogen vaccines for defeating the COVID-19 pandemic: history and mechanism |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=32297985|t=2020. Evaluation of Antiviral Therapies for Coronavirus Disease 2019 (COVID-19) Pneumonia in Shanghai, China |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=32293713|t=2020. Treatment with convalescent plasma for COVID-19 patients in Wuhan, China |pdf=|usr=}}
| + | |
− | {{tp|p=32285942|t=2020. Defining Protective Epitopes for COVID-19 Vaccination Models |pdf=|usr=}}
| + | |
− | {{tp|p=32281679|t=2020. COVID-19: Herd Immunity and Convalescent Plasma Transfer Therapy |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | {{tp|p=32380023|t=ä. Immunomodulation in COVID-19 |pdf=|usr=}}
| + | |
− | {{tp|p=32367857|t=2020. Safety of an immunomodulator Mycobacterium w in COVID-19 |pdf=|usr=}}
| + | |
− | {{tp|p=32367847|t=2020. Nasopharyngeal wash in preventing and treating upper respiratory tract infections: Could it prevent COVID-19?|pdf=|usr=}}
| + | |
− | {{tp|p=32371362|t=2020. Mesenchymal stem cell (MSc) secretome: A possible therapeutic strategy for intensive-care COVID-19 patients |pdf=|usr=}}
| + | |
− | {{tp|p=32366816|t=2020. An Evidence Based Perspective on mRNA-SARS-CoV-2 Vaccine Development |pdf=|usr=}}
| + | |
− | {{tp|p=32376359|t=ä. Design of a peptide-based subunit vaccine against novel coronavirus SARS-CoV-2 |pdf=|usr=}}
| + | |
− | {{tp|p=32219429|t=2020. Convalescent Plasma to Treat COVID-19: Possibilities and Challenges |pdf=|usr=}}
| + | |
− | {{tp|p=32352484|t=2020. Testing an Old Therapy Against a New Disease: Convalescent Plasma for COVID-19 |pdf=|usr=}}
| + | |
− | {{tp|p=32208486|t=2020. Treating COVID-19-Off-Label Drug Use, Compassionate Use, and Randomized Clinical Trials During Pandemics |pdf=|usr=}}
| + | |
− | {{tp|p=32297900|t=2020. Finding Effective Treatments for COVID-19: Scientific Integrity and Public Confidence in a Time of Crisis |pdf=|usr=}}
| + | |
− | {{tp|p=32282022|t=2020. Pharmacologic Treatments for Coronavirus Disease 2019 (COVID-19): A Review |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=32243778|t=2020. Ensuring global access to COVID-19 vaccines |pdf=|usr=}}
| + | |
− | {{tp|p=32247324|t=2020. Global coalition to accelerate COVID-19 clinical research in resource-limited settings |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=32372435|t=2020. Drug repurposing in the era of COVID-19: a call for leadership and government investment |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=32324177|t=2020. Some drugs for COVID-19 |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | {{tp|p=32375002|t=ä. Deconvoluting Lipid Nanoparticle Structure for Messenger RNA Delivery |pdf=|usr=}}
| + | |
− | {{ttp|p=32378459|t=2020. Application of nanomaterials in treatment, anti-infection and detection of coronaviruses |pdf=|usr=}}
| + | |
− | {{ttp|p=32363750|t=2020. A Chemographic Audit of anti-Coronavirus Structure-Activity Information from Public Databases (ChEMBL) |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=32227757|t=2020. Developing Covid-19 Vaccines at Pandemic Speed |pdf=|usr=}}
| + | |
− | {{tp|p=32289216|t=2020. Drug Evaluation during the Covid-19 Pandemic |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | {{tp|p=32273591|t=2020. The COVID-19 vaccine development landscape |pdf=|usr=}}
| + | |
− | {{tp|p=32269311|t=2020. Coordinating the COVID-19 pipeline |pdf=|usr=}}
| + | |
− | {{tp|p=32127666|t=2020. Therapeutic options for the 2019 novel coronavirus (2019-nCoV) |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | | + | |
− | {{tp|p=32355243|t=2020. Scores of coronavirus vaccines are in competition - how will scientists choose the best?|pdf=|usr=}}
| + | |
− | {{tp|p=32353859|t=2020. A SARS-CoV-2 protein interaction map reveals targets for drug repurposing |pdf=|usr=}}
| + | |
− | {{tp|p=32300225|t=2020. On the front lines of the coronavirus-vaccine battle |pdf=|usr=}}
| + | |
− | {{tp|p=32346146|t=2020. The race for coronavirus vaccines: a graphical guide |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=32377399|t=2020. COVID-19 vaccines: breaking record times to first-in-human trials |pdf=|usr=}}
| + | |
− | {{tp|p=32297843|t=2020. Oligonucleotides and the COVID-19 Pandemic: A Perspective |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=32275178|t=2020. Harnessing innate immunity to eliminate SARS-CoV-2 and ameliorate COVID-19 disease |pdf=|usr=}}
| + | |
− | {{tp|p=32216577|t=2020. Artificial intelligence and machine learning to fight COVID-19 |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=32352615|t=2020. Povidone-iodine gargle as a prophylactic intervention to interrupt the transmission of SARS-CoV-2 |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | {{tp|p=32259313|t=2020. Review of Emerging Pharmacotherapy for the Treatment of Coronavirus Disease 2019 |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | {{tp|p=32295694|t=2020. COVID-19 vaccination clinical trials should consider multiple doses of BCG |pdf=|usr=}}
| + | |
− | {{tp|p=32326830|t=2020. Photobiomodulation and Antiviral Photodynamic Therapy as a Possible Novel Approach in COVID-19 Management |pdf=|usr=}}
| + | |
− | {{tp|p=32330404|t=2020. Can Transdermal Photobiomodulation Help Us at the Time of COVID-19?|pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | | + | |
− | {{tp|p=32374874|t=ä. COVID-19: an unexpected indication for anti-rheumatic therapies?|pdf=|usr=}}
| + | |
− | {{tp|p=32376603|t=ä. Development of an inactivated vaccine candidate for SARS-CoV-2 |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | {{tp|p=32301312|t=2020. Vaccins anti-covid-19 : les recherches de johnson & johnson, sanofi et pasteur |pdf=|usr=}}
| + | |
− | {{tp|p=32355008|t=2020. COVID-19 shot protects monkeys |pdf=|usr=}}
| + | |
− | {{tp|p=32292113|t=2020. Stem Cell?Based Therapy for Coronavirus Disease 2019 |pdf=|usr=}}
| + | |
− | {{tp|p=32272857|t=2020. Role of Tissue Engineering in COVID-19 and Future Viral Outbreaks |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=32302280|t=2020. Brief Summary of Potential SARS-CoV-2 Prophylactic and Treatment Drugs in the Emergency Department |pdf=|usr=}}
| + | |
− | {{tp|p=32220178|t=2020. Biological Product Development Strategies for Prevention and Treatment of Coronavirus Disease 2019 |pdf=|usr=}}
| + | |
− | {{tp|p=32374891|t=2020. Convalescent plasma to treat coronavirus disease 2019 (COVID-19): considerations for clinical trial design |pdf=|usr=}}
| + | |
− | {{tp|p=32374890|t=2020. COVID-19 convalescent plasma: phase 2 |pdf=|usr=}}
| + | |
− | {{tp|p=32245869|t=2020. Possible treatment of Covid-19 with a therapeutic vaccine |pdf=|usr=}}
| + | |
− | {{tp|p=32221001|t=2020. Possible method for the production of a Covid-19 vaccine |pdf=|usr=}}
| + | |
− | {{tp|p=32324899|t=2020. Operational protocol for donation of anti-COVID-19 convalescent plasma in Italy |pdf=|usr=}}
| + | |
− | {{tp|p=32319102|t=2020. Points to consider in the preparation and transfusion of COVID-19 convalescent plasma |pdf=|usr=}}
| + | |
− | {{tp|p=32240545|t=2020. Collecting and evaluating convalescent plasma for COVID-19 treatment: why and how?|pdf=|usr=}}
| + | |
− | {{ttp|p=32281329|t=2020. Study on treatment of "cytokine storm" by anti-2019-nCoV prescriptions based on arachidonic acid metabolic pathway |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=32164080|t=2020. Potential antiviral therapeutics for 2019 Novel Coronavirus |pdf=|usr=}}
| + | |
− | {{tp|p=32164081|t=2020. Pharmacotherapeutics for the new coronavirus pneumonia |pdf=|usr=}}
| + | |
− | {{tp|p=32164077|t=2020. Pharmacotherapeutic about the new coronavirus pneumonia |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=32234130|t=2020. Progress and challenge of vaccine development against 2019 novel coronavirus (2019-nCoV) |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=C7180667|t=ä. Achilles heel of the killer virus: the highly important molecular targets for hitting SARS-CoV-2 that causes COVID-19 |pdf=|usr=}}
| + | |
− | {{tp|p=C7190525|t=2020. Adjunct Immunotherapies for the Management of Severely Ill COVID-19 Patients |pdf=|usr=}}
| + | |
− | {{tp|p=C7152890|t=2020. Biomimetic nanoparticles as universal influenza vaccine |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=C7187737|t=ä. COVID-19 and the Rationale for Pharmacotherapy: A South African Perspective |pdf=|usr=}}
| + | |
− | {{tp|p=C7167691|t=2020. (Deutsche Szene) Schutz vor und Hilfe bei Covid19 Infektionen |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | {{tp|p=C7189010|t=2020. Biologika und Covid-19 |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | | + | |
− | {{tp|p=32387535|t=ä. Asthma, biologics, corticosteroids, and coronavirus disease 2019 |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=C7197606|t=ä. Antibody therapies for the treatment of COVID-19 |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=32380316|t=2020. Convalescent plasma in Covid-19: Possible mechanisms of action |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | {{tp|p=32376392|t=2020. Should we stimulate or suppress immune responses in COVID-19? Cytokine and anti-cytokine interventions |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=32389697|t=ä. Plasmapheresis treatment in COVID-19?related autoimmune meningoencephalitis: Case series |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=32437659|t=2020. Trained Immunity: a Tool for Reducing Susceptibility to and the Severity of SARS-CoV-2 Infection |pdf=|usr=}}
| + | |
− | {{ttp|p=32402856|t=2020. Could an endo-lysosomal ion channel be the Achilles heel of SARS-CoV2?|pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=C7151553|t=2020. COVID-19 Coronavirus spike protein analysis for synthetic vaccines, a peptidomimetic antagonist, and therapeutic drugs, and analysis of a proposed achilles? heel conserved region to minimize probability of escape mutations and drug resistance |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=32129977|t=2020. Cell-Membrane-Mimicking Nanodecoys against Infectious Diseases |pdf=|usr=}}
| + | |
− | {{tp|p=29115746|t=2018. Progress Toward the Clinical Translation of Bioinspired Peptide and Protein Assemblies |pdf=|usr=}}
| + | |
− | {{tp|p=29717819|t=2018. Recent Advances in the Development of Antimicrobial Nanoparticles for Combating Resistant Pathogens |pdf=|usr=}}
| + | |
− | {{tp|p=28945945|t=2017. Macromolecular Antiviral Agents against Zika, Ebola, SARS, and Other Pathogenic Viruses |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=21093489|t=2011. (x)Single-dose intranasal administration with mDEF201 (adenovirus vectored mouse interferon-alpha) confers protection from mortality in a lethal SARS-CoV BALB/c mouse model |pdf=|usr=}}
| + | |
− | {{tp|p=20727913|t=2010. (x)Identification of phenanthroindolizines and phenanthroquinolizidines as novel potent anti-coronaviral agents for porcine enteropathogenic coronavirus transmissible gastroenteritis virus and human severe acute respiratory syndrome coronavirus |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=31073993|t=2019. (x)Synthesis and anti?coronavirus activity of a series of 1?thia?4?azaspiro 4 5 decan?3?one derivatives |pdf=|usr=}}
| + | |
− | | + | |
− | *[https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3335060/ Immunization with SARS Coronavirus Vaccines Leads to Pulmonary Immunopathology on Challenge with the SARS Virus btu @OnlyTheGhosts] | + | |
− | {{tp|p=32285908|t=2020. Chloroquine and bafilomycin A mimic lysosomal storage disorders and impair mTORC1 signalling |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=32243785|t=2020. Embracing the Landscape of Therapeutics |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | {{tp|p=30993690|t=2019. Emerging viruses and current strategies for vaccine intervention |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=32099652|t=2020. Frontiers in antiviral therapy and immunotherapy |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=32259744|t=2020. DNA vaccines: prime time is now |pdf=|usr=}}
| + | |
− | {{tp|p=32387642|t=2020. Innovations in structure-based antigen design and immune monitoring for next generation vaccines |pdf=|usr=}}
| + | |
− | {{tp|p=C7163352|t=ä. Cell-Based Therapies for COVID-19: Proper Clinical Investigations are Essential |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=32382358|t=ä. COVID-19 and Diabetes Mellitus: May Old Anti-diabetic Agents Become the New Philosopher?s Stone?|pdf=|usr=}}
| + | |
− | {{tp|p=32377559|t=ä. COVID-19: Review of Epidemiology and Potential Treatments Against 2019 Novel Coronavirus |pdf=|usr=}}
| + | |
− | {{tp|p=32387262|t=ä. Extracellular vesicles from mesenchymal stem cells as a Covid-19 treatment |pdf=|usr=}}
| + | |
− | {{tp|p=C7194243|t=ä. Coronavirus Disease 2019 (COVID-19) Spread and Pharmacovigilance Implications: Expert Opinion |pdf=|usr=}}
| + | |
− | {{tp|p=32383008|t=ä. The Role of Pharmacovigilance and ISoP During the Global COVID-19 Pandemic |pdf=|usr=}}
| + | |
− | {{tp|p=32344202|t=2020. Impact of immune enhancement on Covid-19 polyclonal hyperimmune globulin therapy and vaccine development |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=C7118608|t=ä. A Promising Anti-Cytokine-Storm Targeted Therapy for COVID-19: The Artificial-Liver Blood-Purification System |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | {{tp|p=C7117595|t=ä. Drug repurposing strategies for COVID-19 |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=16022774|t=2005. (+)SARS Vaccine Development |pdf=|usr=}}
| + | |
− | {{tp|p=28861908|t=2017. (+)Issues in vaccinology: Present challenges and future directions |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=16433589|t=2006. (+)Antiviral applications of RNAi for coronavirus |pdf=|usr=}}
| + | |
− | {{tp|p=32318055|t=2020. Better Epitope Discovery, Precision Immune Engineering, and Accelerated Vaccine Design Using Immunoinformatics Tools |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=32362826|t=2020. Editorial: New Advances in RNA Targeting |pdf=|usr=}}
| + | |
− | {{tp|p=32201439|t=2020. Therapeutic options for the treatment of 2019-novel coronavirus: An evidence-based approach |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=32081774|t=2020. Discovery and development of safe-in-man broad-spectrum antiviral agents |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | {{tp|p=32386655|t=2020. Influence of immune aging on vaccine responses |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | {{tp|p=32281318|t=2020. Convalescent Plasma Therapy for Corona Virus Disease 2019: a Long Way to Go but Worth Trying |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=32105468|t=2020. Structure-Based Stabilization of Non-native Protein?Protein Interactions of Coronavirus Nucleocapsid Proteins in Antiviral Drug Design |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=16697221|t=2006. (+)Template-based coiled-coil antigens elicit neutralizing antibodies to the SARS-coronavirus |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=32388486|t=2020. Light as a potential treatment for pandemic coronavirus infections: A perspective |pdf=|usr=}}
| + | |
− | {{tp|p=C7202831|t=ä. Testing COVID-19 therapies to prevent progression of mild disease |pdf=|usr=}}
| + | |
− | {{tp|p=C7202844|t=ä. Vaccine development during global epidemics: the Zika experience |pdf=|usr=}}
| + | |
− | {{tp|p=32380023|t=ä. Immunomodulation in COVID-19 |pdf=|usr=}}
| + | |
− | {{tp|p=32444269|t=ä. Immunotherapies for COVID-19: lessons learned from sepsis |pdf=|usr=}}
| + | |
− | {{tp|p=32409074|t=2020. An overview of functional nanoparticles as novel emerging antiviral therapeutic agents |pdf=|usr=}}
| + | |
− | {{tp|p=C7190528|t=ä. Treatment Considerations for COVID-19: A Critical Review of the Evidence (or Lack Thereof) |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | {{tp|p=32373787|t=2020. A new paradigm for drug development |pdf=|usr=}}
| + | |
− | {{tp|p=32359447|t=2020. The resurgence of convalescent plasma therapy |pdf=|usr=}}
| + | |
− | {{tp|p=32325038|t=ä. (+)Safety and immunogenicity of a candidate Middle East respiratory syndrome coronavirus viral-vectored vaccine: a dose-escalation, open-label, non-randomised, uncontrolled, phase 1 trial |pdf=|usr=}}
| + | |
− | {{tp|p=32325036|t=ä. Two Middle East respiratory syndrome vaccines: first step for other coronavirus vaccines?|pdf=|usr=}}
| + | |
− | {{ttp|p=29329956|t=2018. Herd immunity: hyperimmune globulins for the 21st century |pdf=|usr=}}''megapool for the top useful human mab''
| + | |
− | {{tp|p=31351923|t=2019. (+)First clinical trial of a MERS coronavirus DNA vaccine |pdf=|usr=}}
| + | |
− | {{tp|p=28664850|t=2017. (+)Novel translational approaches to the search for precision therapies for acute respiratory distress syndrome |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=29852530|t=2020. The expanding role of mass spectrometry in the field of vaccine development |pdf=|usr=}}
| + | |
− | {{tp|p=31432544|t=2020. Repurposing approved drugs on the pathway to novel therapies |pdf=|usr=}}
| + | |
− | {{tp|p=31692019|t=2020. (+)Gold nanoparticle?adjuvanted S protein induces a strong antigen?specific IgG response against severe acute respiratory syndrome?related coronavirus infection, but fails to induce protective antibodies and limit eosinophilic infiltration in lungs |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=32197324|t=2020. A Review on Applications of Computational Methods in Drug Screening and Design |pdf=|usr=}}
| + | |
− | {{tp|p=20956884|t=2010. (+)Small Interfering RNA Effectively Inhibits the Expression of SARS Coronavirus Membrane Gene at Two Novel Targeting Sites |pdf=|usr=}}
| + | |
− | {{tp|p=32317764|t=ä. Developing therapeutic monoclonal antibodies at pandemic pace |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | {{tp|p=32387334|t=ä. The Forrest Gump approach to preventing severe COVID-19 ? reverse the predisposing pro-inflammatory state with exercise |pdf=|usr=}}
| + | |
− | {{tp|p=32376359|t=2020. Design of a peptide-based subunit vaccine against novel coronavirus SARS-CoV-2 |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=32382315|t=2020. Can graphene take part in the fight against COVID-19?|pdf=|usr=}}
| + | |
− | {{tp|p=32313660|t=2020. A short review on antibody therapy for COVID-19 |pdf=|usr=}}
| + | |
− | {{tp|p=32377399|t=2020. COVID-19 vaccines: breaking record times to first-in-human trials |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | {{tp|p=32380052|t=2020. Granulocyte-targeted therapies for airway diseases |pdf=|usr=}}
| + | |
− | {{tp|p=32389754|t=ä. (low dose radiat)RILI model and the Covid-19 pneumonia: The radiation oncologist point of view? |pdf=|usr=}}
| + | |
− | {{tp|p=32387544|t=ä. Response to: Low dose radiation therapy for COVID-19 pneumonia a double-edged sword? |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | | + | |
| | | |
| | | |
− | {{tp|p=32448638|t=2020. Convalescent plasma, an apheresis research project targeting and motivating the fully recovered COVID 19 patients: A rousing message of clinical benefit to both donors and recipients alike |pdf=|usr=}}
| + | A concept of curative retargeting has been found by cellular lockdown with kinase inhibitors from the oncologic pharmacopoiea. |
− | {{tp|p=32417123|t=ä. Convalescent plasma, an apheresis research project targeting and motivating the fully recovered COVID 19 patients: A rousing message of clinical benefit to both donors and recipients alike |pdf=|usr=}}
| + | This means, virus replication can be stalled to zero w/o need of develpoment of new substances. There is no need for world |
− | {{tp|p=32418793|t=2020. An effective CTL peptide vaccine for Ebola Zaire Based on Survivors? CD8+ targeting of a particular nucleocapsid protein epitope with potential implications for COVID-19 vaccine design |pdf=|usr=}}
| + | vaccination anymore. The virus needs permissible cells, and most perimissible is phosphotyrosine on its own compnents. |
− | {{tp|p=32381478|t=2020. Enabling emergency mass vaccination: Innovations in manufacturing and administration during a pandemic |pdf=|usr=}}
| + | Paper is (not yet in PubMed) : |
− | {{tp|p=32452420|t=2020. Antiviral activity of lycorine against Zika virus in vivo and in vitro |pdf=|usr=}}
| + | |
| | | |
| + | *'''[https://www.sciencedirect.com/science/article/pii/S1097276520305499?via%3Dihub Growth factor receptor signaling inhibition prevents SARS-CoV-2 replication at Mol Cell 2020/08/11]''' |
| + | credentials to [https://web.de/magazine/news/coronavirus/coronavirus-blockade-zellulaerer-kommunikation-forscher-stoppen-vermehrung-sars-cov-2-35045170 Marinus Brandl] who told us about it today. |
| + | based on e.g. |
| | | |
− | {{tp|p=32061923|t=2020. Dipeptidyl peptidase 4 inhibitors and their potential immune modulatory functions |pdf=|usr=}} | + | {{ttp|p=32408336|t=2020. Proteomics of SARS-CoV-2-infected host cells reveals therapy targets |pdf=|usr=}} |
| | | |
| + | ======================================================================================= |
| | | |
− | {{tp|p=32208449|t=2020. BRD4 inhibition exerts anti-viral activity through DNA damage-dependent innate immune responses |pdf=|usr=}}
| + | COVID19 is now a CURABLE disease !!! |
− | {{tp|p=32355446|t=2020. Medicaments rhumatologiques pour le traitement de l?infection par le COVID-19? |pdf=|usr=}}
| + | |
| | | |
− | {{tp|p=16043204|t=2005. (+)Long-term protection from SARS coronavirus infection conferred by a single immunization with an attenuated VSV-based vaccine |pdf=|usr=}}
| + | ======================================================================================= |
− | {{tp|p=31930543|t=2020. Inactivation of three emerging viruses ? severe acute respiratory syndrome coronavirus, Crimean?Congo haemorrhagic fever virus and Nipah virus ? in platelet concentrates by ultraviolet C light and in plasma by methylene blue plus visible light |pdf=|usr=}}
| + | |