|
|
(53 dazwischenliegende Versionen von einem Benutzer werden nicht angezeigt) |
Zeile 1: |
Zeile 1: |
− | {{pnc}} | + | {{gohome}} |
| + | {{ft|P}} |
| + | '''CHERRYPICKING STUDIES IS NOT SCIENCE |
| + | {{qt|Reviews on covid drug development}} |
| | | |
− | current items will be put into the subsections.
| |
− | subsections with contents are marked ''with content''.
| |
− | the others are pending data.
| |
| | | |
− | *[[reviews on covid drug development]] ''with content'' | + | *'''[[scouting ideas]]''' |
− | *
| + | |
| | | |
− | *[[Patients on biologicals]] | + | *'''[[PHA Biologicals]]''' |
− | *[[HMGB1, RAGE]]
| + | |
− | *[[pre-Interleukin 6]] ''with content''
| + | |
− | *[[post-Interleukin 6]]
| + | |
− | *[[pre-TNFalpha]]
| + | |
− | *[[post-TNFalpha]]
| + | |
− | *[[pre-Interleukin 17]]
| + | |
− | *[[post-Interleukin 17]]
| + | |
− | *[[pre-Interleukin 1]]
| + | |
− | *[[post-Interleukin 1]]
| + | |
− | *[[Inflammasome]]
| + | |
| | | |
− | *[[NK-kappaB]] | + | *'''[[PHA conventional pharmacology]]''' |
− | *[[STAT 3]]
| + | |
− | *[[JAK Janus Kinase]]
| + | |
− | *[[Corticosteroids]]
| + | |
− | *[[Cytokine absorbers]]
| + | |
− | *[[Target Complement system]]
| + | |
− | *[[Target Extracellular traps]]
| + | |
− | *[[Anticoagulant in covid19]]
| + | |
− | *[[Antioxidants]]
| + | |
− | *[[Stem cells]]
| + | |
− | *[[MDSC cells]]
| + | |
| | | |
| + | *'''[[PHA retargeted compounds]]''' |
| | | |
| + | *'''[[PHA antivirals by mechanism]]''' |
| | | |
− | *[[other single compounds]] | + | *'''[[PHA pharmacophore by screened target]]''' |
− | *[[Retargeted single compounds]]
| + | |
− | *[[Hydroxychloroquine]] ''with content''
| + | |
− | *
| + | |
| | | |
− | *[[other antiviral compounds]] | + | *'''[[PHA ImmunoNutrients]] |
− | *[[AV Remdesivir]]
| + | |
− | *[[AV Lopinavir]]
| + | |
− | *[[AV Ivermectin]]
| + | |
| | | |
− | *[[Target ACE2, Spike protein]] | + | *'''[[PHA compl altern natural]]''' |
− | *[[Target TMPRSS2, Spike protein]]
| + | |
| | | |
| + | *'''[[PHA within indications compounds]]''' |
| | | |
| + | *'''[[PHA Serum products]]''' |
| | | |
− | *[[Interferons]] | + | *'''[[PHA Vaccination]]''' |
| | | |
| + | PHA related options: |
| | | |
| + | *[[Radiation therapy]] |
| + | *[[Phototherapy]] |
| + | *[[Electric fields]] |
| + | *[[Treatment other concepts]] |
| | | |
− | *[[Vitamin D]]
| |
| | | |
− | *[[Statins]]
| + | A concept of curative retargeting has been found by cellular lockdown with kinase inhibitors from the oncologic pharmacopoiea. |
− | *[[Anorganic nutrients Magnesium]]
| + | This means, virus replication can be stalled to zero w/o need of develpoment of new substances. There is no need for world |
− | *[[Anorganic nutrients Selenium]]
| + | vaccination anymore. The virus needs permissible cells, and most perimissible is phosphotyrosine on its own compnents. |
− | *[[Anorganic nutrients Zinc]]
| + | Paper is (not yet in PubMed) : |
| | | |
| + | *'''[https://www.sciencedirect.com/science/article/pii/S1097276520305499?via%3Dihub Growth factor receptor signaling inhibition prevents SARS-CoV-2 replication at Mol Cell 2020/08/11]''' |
| + | credentials to [https://web.de/magazine/news/coronavirus/coronavirus-blockade-zellulaerer-kommunikation-forscher-stoppen-vermehrung-sars-cov-2-35045170 Marinus Brandl] who told us about it today. |
| + | based on e.g. |
| | | |
| + | {{ttp|p=32408336|t=2020. Proteomics of SARS-CoV-2-infected host cells reveals therapy targets |pdf=|usr=}} |
| | | |
− | *[[Traditional Chinese Medicine]]
| + | ======================================================================================= |
− | *[[Natural compounds]]
| + | |
| | | |
− | *[[Reconvalescent blood products, Passive vaccine]] ''with content''
| + | COVID19 is now a CURABLE disease !!! |
− | *[[Plasmapheresis]]
| + | |
| | | |
− | *[[Immunodeviation]] e.g. by adjuvants or other vaccinations
| + | ======================================================================================= |
− | *[[Active vaccine]] ''with cotent''
| + | |
− | | + | |
− | | + | |
− | {{tp|p=32162456|t=2020. Rapid Identification of Potential Inhibitors of SARS-CoV-2 Main Protease by Deep Docking of 1 3 Billion Compounds |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | '''Microbiome as target'''
| + | |
− | {{tp|p=32356654|t=ä. Considering the Effects of Microbiome and Diet on SARS-CoV-2 Infection: Nanotechnology Roles |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | '''stem cells'''
| + | |
− | {{tp|p=32257554|t=2020. Mesenchymal Stem Cell Infusion Shows Promise for Combating Coronavirus (COVID-19)- Induced Pneumonia |pdf=|usr=}}
| + | |
− | {{tp|p=32257537|t=2020. Transplantation of ACE2- Mesenchymal Stem Cells Improves the Outcome of Patients with COVID-19 Pneumonia |pdf=|usr=}}
| + | |
− | {{tp|p=32283815|t=2020. Mesenchymal Stromal Cell Secretome for Severe COVID-19 Infections: Premises for the Therapeutic Use |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | {{tp|p=32241793|t=2020. Clinical course of COVID-19 in a series of patients with chronic arthritis treated with immunosuppressive targeted therapies |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | '''CRISPR genome editing technology'''
| + | |
− | {{tp|p=32353252|t=ä. Development of CRISPR as an Antiviral Strategy to Combat SARS-CoV-2 and Influenza |pdf=|usr=}}
| + | |
− | | + | |
− | '''Virus interference'''
| + | |
− | {{tp|p=32071427|t=2020. Virus against virus: a potential treatment for 2019-nCov (SARS-CoV-2) and other RNA viruses |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | '''resilience enhancement'''
| + | |
− | {{tp|p=32229705|t=2020. Geroprotective and senoremediative strategies to reduce the comorbidity, infection rates, severity, and lethality in gerophilic and gerolavic infections |pdf=|usr=}}
| + | |
− | {{tp|p=32311498|t=ä. The impact of nutrition on COVID-19 susceptibility and long-term consequences |pdf=|usr=}}
| + | |
− | {{tp|p=32276453|t=2020. Exploring the Relevance of Senotherapeutics for the Current SARS-CoV-2 Emergency and Similar Future Global Health Threats |pdf=|usr=}}
| + | |
− | | + | |
− | '''psychoneuroimmunology'''
| + | |
− | {{tp|p=32234338|t=ä. Using psychoneuroimmunity against COVID-19 |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | '''Exercise'''
| + | |
− | {{tp|p=32311497|t=ä. The immunological case for staying active during the COVID-19 pandemic |pdf=|usr=}}
| + | |
− | | + | |
− | '''Topical agents''' opening up the world of nano...
| + | |
− | *[https://www.dailymail.co.uk/sciencetech/article-8315269/Commercial-mouthwash-prevent-COVID-19-transmission-scientists-say.html on mouth rinses]
| + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | ----
| + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | {{tp|p=32247038|t=2020. Potential effect of blood purification therapy in reducing cytokine storm as a late complication of critically ill COVID-19 |pdf=|usr=}}
| + | |
− | {{tp|p=32222466|t=2020. The use of anti-inflammatory drugs in the treatment of people with severe coronavirus disease 2019 (COVID-19): The Perspectives of clinical immunologists from China |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | {{tp|p=32266375|t=ä. Inquiring into Benefits of Independent Activation of Non-Classical Renin-Angiotensin System in the Clinical Prognosis and Reduction of COVID-19 mortality |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | {{tp|p=32305181|t=ä. ESPEN expert statements and practical guidance for nutritional management of individuals with SARS-CoV-2 infection |pdf=|usr=}}
| + | |
− | {{tp|p=32360083|t=ä. Modulation of Hb-O2 affinity to improve hypoxemia in COVID-19 patients |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=32277367|t=ä. Rheumatologists? perspective on coronavirus disease 19 (COVID-19) and potential therapeutic targets |pdf=|usr=}}
| + | |
− | {{tp|p=32373721|t=2020. Low dose lung radiotherapy for COVID-19 pneumonia The rationale for a cost-effective anti-inflammatory treatment |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | {{tp|p=32241301|t=2020. A novel treatment approach to the novel coronavirus: an argument for the use of therapeutic plasma exchange for fulminant COVID-19 |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=32318324|t=ä. Depriving Iron Supply to the Virus Represents a Promising Adjuvant Therapeutic Against Viral Survival |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | {{tp|p=32360420|t=ä. Cytokine storm intervention in the early stages of COVID-19 pneumonia |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | | + | |
− | {{tp|p=32335366|t=2020. Can dapagliflozin have a protective effect against COVID-19 infection? A hypothesis |pdf=|usr=}}
| + | |
− | {{tp|p=32333972|t=ä. Letter to the Editor in response to the article ?COVID-19 and diabetes: Can DPP4 inhibition play a role?? |pdf=|usr=}}
| + | |
− | {{tp|p=32333966|t=2020. COVID-19 and diabetes: Is this association driven by the DPP4 receptor? Potential clinical and therapeutic implications |pdf=|usr=}}
| + | |
− | {{tp|p=32333969|t=ä. Response to COVID -19 and Diabetes: Can DPP4 Inhibition Play a Role? ? GLP-1 Might Play One Too |pdf=|usr=}}
| + | |
− | {{tp|p=32283128|t=ä. Should anti-diabetic medications be reconsidered amid COVID-19 pandemic?|pdf=|usr=}} ''on ace2 via adam17, nfkb via dpp4''
| + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | {{tp|p=32325124|t=ä. Vaporization, bioactive formulations and a marine natural product: different perspectives on antivirals |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | {{tp|p=32249203|t=ä. Microneedle array delivered recombinant coronavirus vaccines: Immunogenicity and rapid translational development |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | {{tp|p=32333818|t=2020. COVID-19: lambda interferon against viral load and hyperinflammation |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=32228222|t=2020. Renin-angiotensin system inhibitors improve the clinical outcomes of COVID-19 patients with hypertension |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=C7118608|t=ä. A Promising Anti-Cytokine-Storm Targeted Therapy for COVID-19: The Artificial-Liver Blood-Purification System |pdf=|usr=}}
| + | |
− | {{tp|p=32065055|t=2020. Potent binding of 2019 novel coronavirus spike protein by a SARS coronavirus-specific human monoclonal antibody |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=32292627|t=ä. Clinical study of mesenchymal stem cell treating acute respiratory distress syndrome induced by epidemic Influenza A (H7N9) infection, a hint for COVID-19 treatment |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | {{tp|p=32347925|t=ä. Statin therapy in COVID-19 infection |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=32337546|t=ä. Colchicine as a potent anti-inflammatory treatment in COVID-19: can we teach an old dog new tricks?|pdf=|usr=}}
| + | |
− | {{tp|p=32282032|t=ä. Neprilysin inhibitor?angiotensin II receptor blocker combination (sacubitril/valsartan): rationale for adoption in SARS-CoV-2 patients |pdf=|usr=}}
| + | |
− | {{tp|p=32285293|t=ä. Searching therapeutic strategy of new coronavirus pneumonia from angiotensin-converting enzyme 2: the target of COVID-19 and SARS-CoV |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | {{tp|p=32265310|t=ä. Current Status of Cell-Based Therapies for Respiratory Virus Infections: Applicability to COVID-19 |pdf=|usr=}}
| + | |
− | {{tp|p=32271462|t=2020. Inositol and pulmonary function Could myo-inositol treatment downregulate inflammation and cytokine release syndrome in SARS-CoV-2?|pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | {{tp|p=32329380|t=2020. Adipose-derived stromal stem cells (ASCs) as a new regenerative immediate therapy combating coronavirus (COVID-19)-induced pneumonia |pdf=|usr=}}
| + | |
− | {{tp|p=32312129|t=2020. The role of additive manufacturing and antimicrobial polymers in the COVID-19 pandemic |pdf=|usr=}}
| + | |
− | {{tp|p=32117569|t=2020. Therapeutic strategies in an outbreak scenario to treat the novel coronavirus originating in Wuhan, China |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | {{tp|p=32251729|t=ä. The Greek study in the effects of colchicine in COvid-19 complications prevention (GRECCO-19 study): Rationale and study design |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | {{tp|p=32247692|t=ä. Faecal-oral transmission of SARS-COV-2: practical implications |pdf=|usr=}}
| + | |
− | {{tp|p=32367287|t=ä. New evidence of SARS-CoV-2 transmission through the ocular surface |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | {{tp|p=32251365|t=ä. Considering mutational meltdown as a potential SARS-CoV-2 treatment strategy |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=32186952|t=2020. COVID-19, an emerging coronavirus infection: advances and prospects in designing and developing vaccines, immunotherapeutics, and therapeutics |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | {{tp|p=32366728|t=2020. Medical Education During the COVID-19 Pandemic: A Single Institution Experience |pdf=|usr=}}
| + | |
− | {{tp|p=32366726|t=2020. Management of Asthma in Children during COVID-19 Pandemic |pdf=|usr=}}
| + | |
− | {{tp|p=32366725|t=2020. COVID -19 Pandemic: The Challenges for Pediatric Oncology |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | {{tp|p=32341599|t=2020. Is Immuno-modulation the Key to COVID-19 Pandemic?|pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | {{tp|p=32328406|t=ä. Vaccines for SARS-CoV-2: Lessons from Other Coronavirus Strains |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | {{tp|p=32272396|t=ä. The Possible of Immunotherapy for COVID-19: a Systematic Review |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | {{tp|p=32234466|t=ä. Coronavirus disease 2019 (COVID-19): current status and future perspectives |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | {{tp|p=32283177|t=ä. Coronavirus (COVID-19), First Indication of Efficacy of Gene-Eden-VIR/Novirin in SARS-CoV-2 Infections |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | {{tp|p=32226290|t=2020. Targeting the Endocytic Pathway and Autophagy Process as a Novel Therapeutic Strategy in COVID-19 |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | *[https://www.infowars.com/experts-suggest-90-million-oxford-university-coronavirus-vaccine-doesnt-work/ Oxford vaccine failed in monkeys]
| + | |
− | {{tp|p=32305009|t=ä. Investigating hypothiocyanite against SARS-CoV-2 |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | {{tp|p=32354030|t=2020. Functional Role of Dietary Intervention to Improve the Outcome of COVID-19: A Hypothesis of Work |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | | + | |
− | {{tp|p=32368489|t=2020. The pathogenesis and alternative treatment of SARS-CoV2 |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | *[https://www.nature.com/articles/d41573-020-00073-5 Nature: The COVID-19 vaccine development landscape]
| + | |
− | | + | |
− | | + | |
− | | + | |
− | {{tp|p=32336674|t=ä. COVID-19 Emergency Responders in FDA?s Center for Drug Evaluation and Research |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | {{tp|p=32317220|t=ä. The anti-viral facet of anti-rheumatic drugs: Lessons from COVID-19 |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | {{tp|p=32326602|t=2020. Pharmacological Therapeutics Targeting RNA-Dependent RNA Polymerase, Proteinase and Spike Protein: From Mechanistic Studies to Clinical Trials for COVID-19 |pdf=|usr=}}
| + | |
− | {{tp|p=32326426|t=2020. COVID-19: A Recommendation to Examine the Effect of Mouthrinses with beta-Cyclodextrin Combined with Citrox in Preventing Infection and Progression |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | {{tp|p=32359878|t=2020. Application of plasma exchange in association with higher dose CVVH in Cytokine Storm Complicating COVID-19 |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=32171450|t=2020. Identification of potential cross-protective epitope between a new type of coronavirus (2019-nCoV) and severe acute respiratory syndrome virus |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=32373322|t=ä. Fighting COVID-19 with water |pdf=|usr=}}''dehydration of mucous glycans''
| + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | {{tp|p=32293807|t=2020. Systematic review of the efficacy and safety of antiretroviral drugs against SARS, MERS or COVID?19: initial assessment |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | {{tp|p=32356252|t=ä. COVID-19: Therapeutics and Their Toxicities |pdf=|usr=}}
| + | |
− | {{tp|p=32356251|t=ä. Medical Toxicology and COVID-19: Our Role in a Pandemic |pdf=|usr=}}
| + | |
− | {{tp|p=32052466|t=2020. Potential interventions for novel coronavirus in China: A systematic review |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | {{tp|p=32346490|t=ä. Structural elucidation of SARS-CoV-2 vital proteins: Computational methods reveal potential drug candidates against main protease, Nsp12 polymerase and Nsp13 helicase |pdf=|usr=}}
| + | |
− | {{tp|p=32324533|t=2020. Prevention and therapy of COVID-19 via exogenous estrogen treatment for both male and female patients |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=32291198|t=2020. Impact of Nutrition and Diet on COVID-19 Infection and Implications for Kidney Health and Kidney Disease Management |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | {{tp|p=32321635|t=2020. Old and new antirheumatic drugs for the treatment of COVID-19 |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=32317113|t=2020. COVID-19 therapeutic options for patients with kidney disease |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | {{tp|p=32035018|t=2020. Reducing mortality from 2019-nCoV: host-directed therapies should be an option |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | {{tp|p=32220278|t=2020. Immunosuppression for hyperinflammation in COVID-19: a double-edged sword?|pdf=|usr=}}
| + | |
− | {{tp|p=32353328|t=2020. What policy makers need to know about COVID-19 protective immunity |pdf=|usr=}}
| + | |
− | {{tp|p=32305088|t=2020. Flooded by the torrent: the COVID-19 drug pipeline |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=32339473|t=ä. Probiotics and COVID-19: one size does not fit all |pdf=|usr=}}
| + | |
− | {{tp|p=32199468|t=ä. Use of antiviral drugs to reduce COVID-19 transmission |pdf=|usr=}}
| + | |
− | {{tp|p=32278361|t=ä. Attention should be paid to venous thromboembolism prophylaxis in the management of COVID-19 |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=32325035|t=ä. Plea for multitargeted interventions for severe COVID-19 |pdf=|usr=}}
| + | |
− | {{tp|p=32113510|t=2020. Convalescent plasma as a potential therapy for COVID-19 |pdf=|usr=}}
| + | |
− | {{tp|p=32113509|t=2020. COVID-19: combining antiviral and anti-inflammatory treatments |pdf=|usr=}}
| + | |
− | {{tp|p=32368737|t=2020. Preventing COVID-19-induced pneumonia with anticytokine therapy |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | {{tp|p=32278693|t=2020. In silico studies on therapeutic agents for COVID-19: Drug repurposing approach |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | {{tp|p=32198163|t=2020. Hiding in Plain Sight: an Approach to Treating Patients with Severe COVID-19 Infection |pdf=|usr=}}
| + | |
− | {{tp|p=32265331|t=2020. Single-Dose, Intranasal Immunization with Recombinant Parainfluenza Virus 5 Expressing Middle East Respiratory Syndrome Coronavirus (MERS-CoV) Spike Protein Protects Mice from Fatal MERS-CoV Infection |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=32296777|t=2020. Mesenchymal stem cells and management of COVID-19 pneumonia |pdf=|usr=}}
| + | |
− | {{tp|p=32289117|t=2020. Novel decoy cellular vaccine strategy utilizing transgenic antigen-expressing cells as immune presenter and adjuvant in vaccine prototype against SARS-CoV-2 virus |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | {{tp|p=32292909|t=2020. Target Virus or Target Ourselves for COVID-19 Drugs Discovery?-Lessons learned from anti-influenzas virus therapies |pdf=|usr=}}
| + | |
− | {{tp|p=32220710|t=2020. Renin-angiotensin system: The unexpected flaw inside the human immune system revealed by SARS-CoV-2 |pdf=|usr=}}
| + | |
− | | + | |
− | *''riociguat?''
| + | |
− | | + | |
− | {{tp|p=32353740|t=2020. Serum albumin-mediated strategy for the effective targeting of SARS-CoV-2 |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | {{tp|p=32344313|t=ä. Can pioglitazone be potentially useful therapeutically in treating patients with covid-19?|pdf=|usr=}}
| + | |
− | {{tp|p=32344312|t=2020. Potential effect of natural and anabolizan steroids in elderly patient with COVID-19 |pdf=|usr=}}
| + | |
− | {{tp|p=32344310|t=2020. Respiratory conditions in coronavirus disease 2019 (COVID-19): Important considerations regarding novel treatment strategies to reduce mortality |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | {{tp|p=32339777|t=2020. May IL-17 have a role in COVID-19 infection?|pdf=|usr=}}
| + | |
− | {{tp|p=32335456|t=2020. The old but new: Can unfractioned heparin and low molecular weight heparins inhibit proteolytic activation and cellular internalization of SARS-CoV2 by inhibition of host cell proteases?|pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=C7158785|t=ä. Convalescent plasma: A possible treatment of COVID-19 in India |pdf=|usr=}}
| + | |
− | {{tp|p=32353355|t=ä. Testosterone, a key hormone in the context of COVID-19 pandemic |pdf=|usr=}}
| + | |
− | {{tp|p=32370766|t=2020. Role of adjunctive treatment strategies in COVID-19 and a review of international and national clinical guidelines |pdf=|usr=}}
| + | |
− | {{tp|p=32307014|t=2020. Chinese expert consensus on diagnosis and treatment of coagulation dysfunction in COVID-19 |pdf=|usr=}}
| + | |
− | {{tp|p=32255312|t=2020. A possible probiotic (S salivarius K12) approach to improve oral and lung microbiotas and raise defenses against SARS-CoV-2 |pdf=|usr=}}
| + | |
− | {{tp|p=32365556|t=2020. Pharmacological (or Synthetic) and Nutritional Agonists of PPAR-gamma as Candidates for Cytokine Storm Modulation in COVID-19 Disease |pdf=|usr=}}
| + | |
− | {{tp|p=32231348|t=2020. Emerging prophylaxis strategies against COVID-19 |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | {{tp|p=32187463|t=ä. Covid-19 ? The Search for Effective Therapy |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=32354113|t=2020. On Facing the SARS-CoV-2 (COVID-19) with Combination of Nanomaterials and Medicine: Possible Strategies and First Challenges |pdf=|usr=}}
| + | |
− | {{tp|p=32326343|t=2020. Can Nanotechnology and Materials Science Help the Fight against SARS-CoV-2?|pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=32203437|t=ä. Insights from nanomedicine into chloroquine efficacy against COVID-19 |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | {{tp|p=32296135|t=ä. COVID-19: risk for cytokine targeting in chronic inflammatory diseases?|pdf=|usr=}}
| + | |
− | {{tp|p=32355330|t=ä. Inactivated vaccine for SARS-CoV-2 |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=32346092|t=ä. Cancer therapy tool informs COVID-19 vaccines |pdf=|usr=}}
| + | |
− | {{tp|p=32346094|t=ä. COVID-19 vaccine design: the Janus face of immune enhancement |pdf=|usr=}}
| + | |
− | {{tp|p=32317716|t=ä. The potential danger of suboptimal antibody responses in COVID-19 |pdf=|usr=}}
| + | |
− | *[https://www.biorxiv.org/content/10.1101/2020.03.22.002386v3 A SARS-CoV-2-Human Protein-Protein Interaction Map Reveals Drug Targets and Potential Drug-Repurposing]
| + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | {{tp|p=32313660|t=2020. A short review on antibody therapy for COVID-19 |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=32287799|t=2020. Drug trials under way |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | {{tp|p=32194995|t=2020. The outbreak of SARS-CoV-2 pneumonia calls for viral vaccines |pdf=|usr=}}
| + | |
− | {{tp|p=32340216|t=2020. Optimal Nutritional Status for a Well-Functioning Immune System Is an Important Factor to Protect against Viral Infections |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=32342019|t=ä. Exercise against SARS-CoV-2 (COVID-19): Does workout intensity matter? (A mini review of some indirect evidence related to obesity) |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=32258207|t=2020. High-Dose Intravenous Immunoglobulin as a Therapeutic Option for Deteriorating Patients With Coronavirus Disease 2019 |pdf=|usr=}}
| + | |
− | {{tp|p=32284951|t=2020. Coronavirus Disease 2019 Treatment: A Review of Early and Emerging Options |pdf=|usr=}}
| + | |
− | {{tp|p=32214286|t=2020. Expanded Umbilical Cord Mesenchymal Stem Cells (UC-MSCs) as a Therapeutic Strategy in Managing Critically Ill COVID-19 Patients: The Case for Compassionate Use |pdf=|usr=}}
| + | |
− | {{tp|p=32098302|t=2020. Emergence of Novel Coronavirus 2019-nCoV: Need for Rapid Vaccine and Biologics Development |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=32333199|t=ä. Coronavirus in Hematologic Malignancies: Targeting Molecules Beyond the Angiotensin-Converting Enzyme 2 (ACE2) Wall in COVID-19 |pdf=|usr=}}
| + | |
− | {{tp|p=32307559|t=ä. Management for patients with pediatric surgical disease during the COVID-19 epidemic |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | {{tp|p=32290348|t=2020. COVID-19: A Brief Overview of the Discovery Clinical Trial |pdf=|usr=}}
| + | |
− | {{tp|p=32360585|t=ä. Current targeted therapeutics against COVID-19: based on first-line experience in china |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=32360583|t=ä. Efficacy and safety of current therapeutic options for COVID-19 - lessons to be learnt from SARS and MERS epidemic: A systematic review and meta-analysis |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=32360480|t=ä. Candidate drugs against SARS-CoV-2 and COVID-19 |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | {{tp|p=32369479|t=2020. Antibody-based therapies for COVID-19: Can Europe move faster?|pdf=|usr=}}
| + | |
− | {{tp|p=32343686|t=2020. Pandemic responses: Planning to neutralize SARS-CoV-2 and prepare for future outbreaks |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | {{tp|p=32253318|t=2020. Effectiveness of convalescent plasma therapy in severe COVID-19 patients |pdf=|usr=}}
| + | |
− | {{tp|p=32229574|t=2020. News Feature: Avoiding pitfalls in the pursuit of a COVID-19 vaccine |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=32342871|t=ä. Is low dose radiation therapy a potential treatment for COVID-19 pneumonia?|pdf=|usr=}}
| + | |
− | {{tp|p=32342874|t=ä. Low dose radiation therapy for COVID-19 pneumonia: a double-edged sword |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | {{tp|p=32256547|t=2020. Clinical trials on drug repositioning for COVID-19 treatment |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=32232552|t=ä. Coronavirus disease 2019 (COVID-19) and anti-rheumatic drugs |pdf=|usr=}}
| + | |
− | {{tp|p=32124179|t=ä. Clinical trials for the treatment of Coronavirus disease 2019 (COVID-19): A rapid response to urgent need |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=32278175|t=ä. COVID-19: A promising cure for the global panic |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | {{tp|p=32347054|t=2020. Strategies for vaccine development of COVID-19 |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=32366290|t=2020. Mesenchymal stem cells as a potential therapy for COVID-19 |pdf=|usr=}}
| + | |
− | {{tp|p=C7110269|t=ä. COVID-19 Outbreak: an Update on Therapeutic Options |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=32281052|t=ä. Mesenchymal Stem Cell Therapy for COVID-19: Present or Future |pdf=|usr=}}
| + | |
− | {{tp|p=32320535|t=2020. Mesenchymal stem cells as a potential treatment for critically ill patients with coronavirus disease 2019 |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | {{tp|p=32343358|t=2020. Immunoglobulins or convalescent plasma to tackle COVID-19: buying time to save lives - current situation and perspectives |pdf=|usr=}}
| + | |
− | {{tp|p=32328234|t=2020. Does the direct renin inhibitor have a role to play in attenuating severity of the outbreak coronavirus disease 2019 (COVID-19)?|pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=32345485|t=ä. Treatment for emerging viruses: Convalescent plasma and COVID-19 |pdf=|usr=}}
| + | |
− | {{tp|p=32359789|t=ä. COVID-19 Convalescent Plasma: Now Is the Time for Better Science |pdf=|usr=}}
| + | |
− | {{tp|p=32359788|t=ä. Convalescent Plasma: Therapeutic Hope or Hopeless Strategy in the SARS-CoV-2 Pandemic |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=32334088|t=ä. SARS-CoV-2 and COVID-19: What are our options? Where should we focus our attention on to find new drugs and strategies?|pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | {{tp|p=32249063|t=ä. Neutralizing Antibodies against SARS-CoV-2 and Other Human Coronaviruses |pdf=|usr=}}
| + | |
− | {{tp|p=32362491|t=ä. Neutralizing Antibodies against SARS-CoV-2 and Other Human Coronaviruses: (Trends in Immunology 41, 355?359; 2020) |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=32371057|t=ä. Potential applications of plant biotechnology against SARS-CoV-2 |pdf=|usr=}}
| + | |
− | {{tp|p=32291112|t=ä. Ongoing Clinical Trials for the Management of the COVID-19 Pandemic |pdf=|usr=}}
| + | |
− | {{tp|p=32299202|t=2020. COVID-19, immune system response, hyperinflammation and repurposing antirheumatic drugs|pdf=|usr=}}
| + | |
− | {{tp|p=32293834|t=2020. Antiviral treatment of COVID-19|pdf=|usr=}}
| + | |
− | {{tp|p=32295153|t=2020. What Does Plant-Based Vaccine Technology Offer to the Fight against COVID-19?|pdf=|usr=}}
| + | |
− | {{tp|p=32235387|t=2020. Progress and Prospects on Vaccine Development against SARS-CoV-2 |pdf=|usr=}}
| + | |
− | {{tp|p=32034638|t=ä. Compensation of ACE2 Function for Possible Clinical Management of 2019-nCoV-Induced Acute Lung Injury |pdf=|usr=}}
| + | |
− | {{tp|p=32297156|t=ä. Computational Identification of Small Interfering RNA Targets in SARS-CoV-2 |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=32363219|t=ä. Binding site analysis of potential protease inhibitors of COVID-19 using AutoDock |pdf=|usr=}}
| + | |
− | {{tp|p=32106567|t=2020. Preliminary Identification of Potential Vaccine Targets for the COVID-19 Coronavirus (SARS-CoV-2) Based on SARS-CoV Immunological Studies |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=32272550|t=2020. Antiviral Agents: Discovery to Resistance |pdf=|usr=}}
| + | |
− | {{tp|p=32268515|t=2020. In Silico Discovery of Candidate Drugs against Covid-19 |pdf=|usr=}}
| + | |
− | {{tp|p=32357553|t=2020. Repurposing Antiviral Protease Inhibitors Using Extracellular Vesicles for Potential Therapy of COVID-19 |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=32295237|t=2020. Molecular Investigation of SARS-CoV-2 Proteins and Their Interactions with Antiviral Drugs |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | {{tp|p=32191676|t=2020. Natural small molecules as inhibitors of coronavirus lipid-dependent attachment to host cells: a possible strategy for reducing SARS-COV-2 infectivity?|pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | | + | |
− | {{tp|p=32207983|t=2020. Covid-19 infection and mortality: a physiologist?s perspective enlightening clinical features and plausible interventional strategies |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=32274985|t=2020. Novel Coronavirus Disease (COVID-19): The Need for Immunoprevention at Industrial Scale |pdf=|usr=}}
| + | |
− | {{tp|p=32352178|t=2020. Editorial: low population mortality from COVID-19 in countries south of latitude 35 degrees North-supports vitamin D as a factor determining severity Authors reply |pdf=|usr=}}
| + | |
− | {{tp|p=32311755|t=2020. Editorial: low population mortality from COVID-19 in countries south of latitude 35 degrees North supports vitamin D as a factor determining severity |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=32329159|t=2020. Thoughts on What Chemists Can Contribute to Fighting SARS-CoV-2 - A Short Note on Hand Sanitizers, Drug Candidates and Outreach |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=32345616|t=2020. Anti-inflammatory therapy may ameliorate the clinical picture of COVID-19 |pdf=|usr=}}
| + | |
− | {{tp|p=32304395|t=2020. COVID-19 Respiratory Failure: Targeting Inflammation on VV-ECMO Support |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | {{tp|p=32380316|t=ä. Convalescent plasma in Covid-19: Possible mechanisms of action |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | {{tp|p=32376395|t=ä. SARS-CoV-2 infection among patients with systemic autoimmune diseases |pdf=|usr=}}
| + | |
− | {{ttp|p=32376392|t=ä. Should we stimulate or suppress immune responses in COVID-19? Cytokine and anti-cytokine interventions |pdf=|usr=}}
| + | |
− | | + | |
− | {{ttp|p=32376394|t=ä. Immunomodulatory therapy for the management of severe COVID-19 Beyond the anti-viral therapy: A comprehensive review |pdf=|usr=}}
| + | |
− | {{ttp|p=32376397|t=ä. Seven recommendations to rescue the patients and reduce the mortality from COVID-19 infection: An immunological point of view |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=32361195|t=ä. SARS-CoV-2 infection complicated by inflammatory syndrome Could high-dose human immunoglobulin for intravenous use (IVIG) be beneficial?|pdf=|usr=}}
| + | |
− | {{tp|p=32304139|t=ä. Progress and Concept for COVID?19 Vaccine Development |pdf=|usr=}}
| + | |
− | {{tp|p=32213152|t=2020. Are there any Therapeutic Options Currently Available for Wuhan Coronavirus?|pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | {{tp|p=32366720|t=2020. Identification of antiviral drug candidates against SARS-CoV-2 from FDA-approved drugs |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=32205349|t=2020. Updated Approaches against SARS-CoV-2 |pdf=|usr=}}
| + | |
− | {{tp|p=32229155|t=2020. Can Bioactive Lipids Inactivate Coronavirus (COVID-19)?|pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=32282033|t=2020. Initiating adjunct low-dose hydroxyurea therapy for stroke prevention in children with SCA during the COVID-19 pandemic |pdf=|usr=}}
| + | |
− | {{tp|p=32362106|t=2020. Management of conjunctivitis during the COVID-19 pandemic 2020 |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=32366511|t=2020. Developing a vaccine for covid-19 |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=32217607|t=2020. Covid-19: what treatments are being investigated?|pdf=|usr=}}
| + | |
− | {{tp|p=32217555|t=2020. Covid-19: FDA approves use of convalescent plasma to treat critically ill patients |pdf=|usr=}}
| + | |
− | {{tp|p=32209549|t=2020. Covid-19: trials of four potential treatments to generate "robust data" of what works |pdf=|usr=}}
| + | |
− | {{tp|p=32340998|t=2020. Covid-19: What do we know so far about a vaccine?|pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | {{tp|p=32304110|t=2020. Dosing will be a key success factor in repurposing antivirals for COVID-19 |pdf=|usr=}}
| + | |
− | {{ttp|p=32369628|t=2020. Convalescent donor SARS-COV-2-specific cytotoxic T lymphocyte infusion as a possible treatment option for COVID-19 patients with severe disease has not received enough attention till date |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=32368792|t=2020. Potential Therapeutic Targets and Promising Drugs for Combating SARS-CoV-2 |pdf=|usr=}}
| + | |
− | {{ttp|p=32358833|t=2020. A rational roadmap for SARS-CoV-2/COVID-19 pharmacotherapeutic research and development IUPHAR Review 29 |pdf=|usr=}}
| + | |
− | {{tp|p=32329520|t=2020. Current pharmacological treatments for COVID-19: What s next?|pdf=|usr=}}
| + | |
− | {{tp|p=32371479|t=2020. Cytokine Storm Drugs Move from CAR T to COVID-19 |pdf=|usr=}}
| + | |
− | {{tp|p=32303509|t=2020. Harnessing CAR T-cell Insights to Develop Treatments for Hyperinflammatory Responses in Patients with COVID-19 |pdf=|usr=}}
| + | |
− | | + | |
− | {{ttp|p=32324951|t=2020. Drug Development and Medicinal Chemistry Efforts toward SARS-Coronavirus and Covid-19 Therapeutics |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | {{tp|p=32356569|t=2020. Challenges in Drug Development Posed by the COVID-19 Pandemic: An Opportunity for Clinical Pharmacology |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | {{tp|p=32315229|t=2020. COVID-19 and the CRISPR Community Response |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | | + | |
− | {{tp|p=32133962|t=2020. Effective Chemicals against Novel Coronavirus (COVID-19) in China |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | {{tp|p=32227357|t=ä. COVID?19 treatment by repurposing drugs until the vaccine is in sight |pdf=|usr=}}
| + | |
− | {{tp|p=32377559|t=ä. COVID-19: Review of Epidemiology and Potential Treatments Against 2019 Novel Coronavirus |pdf=|usr=}}
| + | |
− | {{tp|p=32374010|t=2020. Are probiotics effective adjuvant therapeutic choice in patients with COVID-19?|pdf=|usr=}}
| + | |
− | {{tp|p=32374009|t=2020. Potential mechanisms by which the oxygen-ozone (O2-O3) therapy could contribute to the treatment against the coronavirus COVID-19 |pdf=|usr=}}
| + | |
− | {{tp|p=32369103|t=ä. Sacubitril/valsartan in COVID-19 patients: the need for trials |pdf=|usr=}}
| + | |
− | {{tp|p=32373994|t=2020. Could host cell receptor alteration prevent SARS-CoV-2 viral entry? - Hype or hope |pdf=|usr=}}
| + | |
− | {{tp|p=32373992|t=2020. MSCs transplantation may be a potential therapeutic strategy for COVID-19 treatment |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=32362193|t=2020. Quadruple therapy for asymptomatic COVID-19 infection patients |pdf=|usr=}}
| + | |
− | {{tp|p=32366131|t=2020. Harnessing the potential of CRISPR-based platforms to advance the field of hospital medicine |pdf=|usr=}}
| + | |
− | {{tp|p=32336007|t=2020. DPP4 inhibition: preventing SARS-CoV-2 infection and/or progression of COVID-19?|pdf=|usr=}}
| + | |
− | {{tp|p=32224164|t=2020. COVID-19 and diabetes: Can DPP4 inhibition play a role?|pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | {{tp|p=32281695|t=2020. Existing bitter medicines for fighting 2019-nCoV-associated infectious diseases |pdf=|usr=}}
| + | |
− | {{tp|p=32379896|t=2020. Knowledge-based structural models of SARS-CoV-2 proteins and their complexes with potential drugs |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=32157732|t=ä. Harnessing the immune system via Fc?R function in immune therapy: a pathway to next?gen mAbs |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=32298218|t=2020. Potential for developing a SARS-CoV receptor-binding domain (RBD) recombinant protein as a heterologous human vaccine against coronavirus infectious disease (COVID)-19 |pdf=|usr=}}
| + | |
− | {{tp|p=32317431|t=2020. Therapeutic opportunities to manage COVID-19/SARS-CoV-2 infection: Present and future |pdf=|usr=}}
| + | |
− | {{tp|p=32370727|t=2020. SARS-CoV-2 & Covid-19: Key-Roles of the Renin-Angiotensin System / Vitamin D Impacting Drug and Vaccine Developments |pdf=|usr=}}
| + | |
− | {{ttp|p=32377694|t=2020. Towards effective COVID19 vaccines: Updates, perspectives and challenges (Review) |pdf=|usr=}}
| + | |
− | {{tp|p=32338559|t=2020. Low dose radiation therapy for COVID-19 pneumonia: is there any supportive evidence?|pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=32310190|t=2020. Coronavirus drugs: Using plasma from recovered patients as a treatment for COVID-19 |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | | + | |
− | {{tp|p=32306822|t=2020. Peptide-like and small-molecule inhibitors against Covid-19 |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | {{tp|p=32364041|t=2020. Using integrated computational approaches to identify safe and rapid treatment for SARS-CoV-2 |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | üüp
| + | |
− | | + | |
− | {{tp|p=32349031|t=2020. Role of Dipeptidyl Peptidase 4 Inhibitors in Diabetic Patients with Coronavirus-19 Infection |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=32379348|t=2020. 3CL hydrolase-based multiepitope peptide vaccine against SARS-CoV-2 using immunoinformatics |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | {{tp|p=32219882|t=ä. Controversial treatments: An updated understanding of the coronavirus disease 2019 |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=32108352|t=ä. Clinical trial analysis of 2019?nCoV therapy registered in China |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | | + | |
− | {{tp|p=32356910|t=2020. Convalescent plasma transfusion for the treatment of COVID-19: Systematic review |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | {{tp|p=32239514|t=ä. Comments on Zhang et al: Clinical trial analysis of 2019?nCoV therapy registered in China |pdf=|usr=}}
| + | |
− | | + | |
− | {{ttp|p=32378064|t=ä. Feasibility of Therapeutic Effects of the Cholinergic Anti-Inflammatory Pathway on COVID-19 Symptoms |pdf=|usr=}}
| + | |
− | {{tp|p=32320059|t=2020. Potential of live pathogen vaccines for defeating the COVID-19 pandemic: history and mechanism |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=32297985|t=2020. Evaluation of Antiviral Therapies for Coronavirus Disease 2019 (COVID-19) Pneumonia in Shanghai, China |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=32293713|t=2020. Treatment with convalescent plasma for COVID-19 patients in Wuhan, China |pdf=|usr=}}
| + | |
− | {{tp|p=32285942|t=2020. Defining Protective Epitopes for COVID-19 Vaccination Models |pdf=|usr=}}
| + | |
− | {{tp|p=32281679|t=2020. COVID-19: Herd Immunity and Convalescent Plasma Transfer Therapy |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | {{tp|p=32380023|t=ä. Immunomodulation in COVID-19 |pdf=|usr=}}
| + | |
− | {{tp|p=32367857|t=2020. Safety of an immunomodulator Mycobacterium w in COVID-19 |pdf=|usr=}}
| + | |
− | {{tp|p=32367847|t=2020. Nasopharyngeal wash in preventing and treating upper respiratory tract infections: Could it prevent COVID-19?|pdf=|usr=}}
| + | |
− | {{tp|p=32371362|t=2020. Mesenchymal stem cell (MSc) secretome: A possible therapeutic strategy for intensive-care COVID-19 patients |pdf=|usr=}}
| + | |
− | {{tp|p=32366816|t=2020. An Evidence Based Perspective on mRNA-SARS-CoV-2 Vaccine Development |pdf=|usr=}}
| + | |
− | {{tp|p=32376359|t=ä. Design of a peptide-based subunit vaccine against novel coronavirus SARS-CoV-2 |pdf=|usr=}}
| + | |
− | {{tp|p=32219429|t=2020. Convalescent Plasma to Treat COVID-19: Possibilities and Challenges |pdf=|usr=}}
| + | |
− | {{tp|p=32352484|t=2020. Testing an Old Therapy Against a New Disease: Convalescent Plasma for COVID-19 |pdf=|usr=}}
| + | |
− | {{tp|p=32208486|t=2020. Treating COVID-19-Off-Label Drug Use, Compassionate Use, and Randomized Clinical Trials During Pandemics |pdf=|usr=}}
| + | |
− | {{tp|p=32297900|t=2020. Finding Effective Treatments for COVID-19: Scientific Integrity and Public Confidence in a Time of Crisis |pdf=|usr=}}
| + | |
− | {{tp|p=32282022|t=2020. Pharmacologic Treatments for Coronavirus Disease 2019 (COVID-19): A Review |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=32243778|t=2020. Ensuring global access to COVID-19 vaccines |pdf=|usr=}}
| + | |
− | {{tp|p=32247324|t=2020. Global coalition to accelerate COVID-19 clinical research in resource-limited settings |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=32372435|t=2020. Drug repurposing in the era of COVID-19: a call for leadership and government investment |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=32324177|t=2020. Some drugs for COVID-19 |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | {{tp|p=32375002|t=ä. Deconvoluting Lipid Nanoparticle Structure for Messenger RNA Delivery |pdf=|usr=}}
| + | |
− | {{ttp|p=32378459|t=2020. Application of nanomaterials in treatment, anti-infection and detection of coronaviruses |pdf=|usr=}}
| + | |
− | {{ttp|p=32363750|t=2020. A Chemographic Audit of anti-Coronavirus Structure-Activity Information from Public Databases (ChEMBL) |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=32227757|t=2020. Developing Covid-19 Vaccines at Pandemic Speed |pdf=|usr=}}
| + | |
− | {{tp|p=32289216|t=2020. Drug Evaluation during the Covid-19 Pandemic |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | {{tp|p=32273591|t=2020. The COVID-19 vaccine development landscape |pdf=|usr=}}
| + | |
− | {{tp|p=32269311|t=2020. Coordinating the COVID-19 pipeline |pdf=|usr=}}
| + | |
− | {{tp|p=32127666|t=2020. Therapeutic options for the 2019 novel coronavirus (2019-nCoV) |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | | + | |
− | {{tp|p=32355243|t=2020. Scores of coronavirus vaccines are in competition - how will scientists choose the best?|pdf=|usr=}}
| + | |
− | {{tp|p=32353859|t=2020. A SARS-CoV-2 protein interaction map reveals targets for drug repurposing |pdf=|usr=}}
| + | |
− | {{tp|p=32300225|t=2020. On the front lines of the coronavirus-vaccine battle |pdf=|usr=}}
| + | |
− | {{tp|p=32346146|t=2020. The race for coronavirus vaccines: a graphical guide |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=32377399|t=2020. COVID-19 vaccines: breaking record times to first-in-human trials |pdf=|usr=}}
| + | |
− | {{tp|p=32297843|t=2020. Oligonucleotides and the COVID-19 Pandemic: A Perspective |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=32275178|t=2020. Harnessing innate immunity to eliminate SARS-CoV-2 and ameliorate COVID-19 disease |pdf=|usr=}}
| + | |
− | {{tp|p=32216577|t=2020. Artificial intelligence and machine learning to fight COVID-19 |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=32352615|t=2020. Povidone-iodine gargle as a prophylactic intervention to interrupt the transmission of SARS-CoV-2 |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | {{tp|p=32259313|t=2020. Review of Emerging Pharmacotherapy for the Treatment of Coronavirus Disease 2019 |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | {{tp|p=32295694|t=2020. COVID-19 vaccination clinical trials should consider multiple doses of BCG |pdf=|usr=}}
| + | |
− | {{tp|p=32326830|t=2020. Photobiomodulation and Antiviral Photodynamic Therapy as a Possible Novel Approach in COVID-19 Management |pdf=|usr=}}
| + | |
− | {{tp|p=32330404|t=2020. Can Transdermal Photobiomodulation Help Us at the Time of COVID-19?|pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | | + | |
− | {{tp|p=32374874|t=ä. COVID-19: an unexpected indication for anti-rheumatic therapies?|pdf=|usr=}}
| + | |
− | {{tp|p=32376603|t=ä. Development of an inactivated vaccine candidate for SARS-CoV-2 |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | {{tp|p=32301312|t=2020. Vaccins anti-covid-19 : les recherches de johnson & johnson, sanofi et pasteur |pdf=|usr=}}
| + | |
− | {{tp|p=32355008|t=2020. COVID-19 shot protects monkeys |pdf=|usr=}}
| + | |
− | {{tp|p=32292113|t=2020. Stem Cell?Based Therapy for Coronavirus Disease 2019 |pdf=|usr=}}
| + | |
− | {{tp|p=32272857|t=2020. Role of Tissue Engineering in COVID-19 and Future Viral Outbreaks |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=32302280|t=2020. Brief Summary of Potential SARS-CoV-2 Prophylactic and Treatment Drugs in the Emergency Department |pdf=|usr=}}
| + | |
− | {{tp|p=32220178|t=2020. Biological Product Development Strategies for Prevention and Treatment of Coronavirus Disease 2019 |pdf=|usr=}}
| + | |
− | {{tp|p=32374891|t=2020. Convalescent plasma to treat coronavirus disease 2019 (COVID-19): considerations for clinical trial design |pdf=|usr=}}
| + | |
− | {{tp|p=32374890|t=2020. COVID-19 convalescent plasma: phase 2 |pdf=|usr=}}
| + | |
− | {{tp|p=32245869|t=2020. Possible treatment of Covid-19 with a therapeutic vaccine |pdf=|usr=}}
| + | |
− | {{tp|p=32221001|t=2020. Possible method for the production of a Covid-19 vaccine |pdf=|usr=}}
| + | |
− | {{tp|p=32324899|t=2020. Operational protocol for donation of anti-COVID-19 convalescent plasma in Italy |pdf=|usr=}}
| + | |
− | {{tp|p=32319102|t=2020. Points to consider in the preparation and transfusion of COVID-19 convalescent plasma |pdf=|usr=}}
| + | |
− | {{tp|p=32240545|t=2020. Collecting and evaluating convalescent plasma for COVID-19 treatment: why and how?|pdf=|usr=}}
| + | |
− | {{ttp|p=32281329|t=2020. Study on treatment of "cytokine storm" by anti-2019-nCoV prescriptions based on arachidonic acid metabolic pathway |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=32164080|t=2020. Potential antiviral therapeutics for 2019 Novel Coronavirus |pdf=|usr=}}
| + | |
− | {{tp|p=32164081|t=2020. Pharmacotherapeutics for the new coronavirus pneumonia |pdf=|usr=}}
| + | |
− | {{tp|p=32164077|t=2020. Pharmacotherapeutic about the new coronavirus pneumonia |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=32234130|t=2020. Progress and challenge of vaccine development against 2019 novel coronavirus (2019-nCoV) |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=C7180667|t=ä. Achilles heel of the killer virus: the highly important molecular targets for hitting SARS-CoV-2 that causes COVID-19 |pdf=|usr=}}
| + | |
− | {{tp|p=C7190525|t=2020. Adjunct Immunotherapies for the Management of Severely Ill COVID-19 Patients |pdf=|usr=}}
| + | |
− | {{tp|p=C7152890|t=2020. Biomimetic nanoparticles as universal influenza vaccine |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=C7187737|t=ä. COVID-19 and the Rationale for Pharmacotherapy: A South African Perspective |pdf=|usr=}}
| + | |
− | {{tp|p=C7167691|t=2020. (Deutsche Szene) Schutz vor und Hilfe bei Covid19 Infektionen |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | {{tp|p=C7189010|t=2020. Biologika und Covid-19 |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | | + | |
− | {{tp|p=32387535|t=ä. Asthma, biologics, corticosteroids, and coronavirus disease 2019 |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=C7197606|t=ä. Antibody therapies for the treatment of COVID-19 |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=32380316|t=2020. Convalescent plasma in Covid-19: Possible mechanisms of action |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | {{tp|p=32376392|t=2020. Should we stimulate or suppress immune responses in COVID-19? Cytokine and anti-cytokine interventions |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=32389697|t=ä. Plasmapheresis treatment in COVID-19?related autoimmune meningoencephalitis: Case series |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=32437659|t=2020. Trained Immunity: a Tool for Reducing Susceptibility to and the Severity of SARS-CoV-2 Infection |pdf=|usr=}}
| + | |
− | {{ttp|p=32402856|t=2020. Could an endo-lysosomal ion channel be the Achilles heel of SARS-CoV2?|pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=C7151553|t=2020. COVID-19 Coronavirus spike protein analysis for synthetic vaccines, a peptidomimetic antagonist, and therapeutic drugs, and analysis of a proposed achilles? heel conserved region to minimize probability of escape mutations and drug resistance |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=32129977|t=2020. Cell-Membrane-Mimicking Nanodecoys against Infectious Diseases |pdf=|usr=}}
| + | |
− | {{tp|p=29115746|t=2018. Progress Toward the Clinical Translation of Bioinspired Peptide and Protein Assemblies |pdf=|usr=}}
| + | |
− | {{tp|p=29717819|t=2018. Recent Advances in the Development of Antimicrobial Nanoparticles for Combating Resistant Pathogens |pdf=|usr=}}
| + | |
− | {{tp|p=28945945|t=2017. Macromolecular Antiviral Agents against Zika, Ebola, SARS, and Other Pathogenic Viruses |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=21093489|t=2011. (x)Single-dose intranasal administration with mDEF201 (adenovirus vectored mouse interferon-alpha) confers protection from mortality in a lethal SARS-CoV BALB/c mouse model |pdf=|usr=}}
| + | |
− | {{tp|p=20727913|t=2010. (x)Identification of phenanthroindolizines and phenanthroquinolizidines as novel potent anti-coronaviral agents for porcine enteropathogenic coronavirus transmissible gastroenteritis virus and human severe acute respiratory syndrome coronavirus |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=31073993|t=2019. (x)Synthesis and anti?coronavirus activity of a series of 1?thia?4?azaspiro 4 5 decan?3?one derivatives |pdf=|usr=}}
| + | |
− | | + | |
− | *[https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3335060/ Immunization with SARS Coronavirus Vaccines Leads to Pulmonary Immunopathology on Challenge with the SARS Virus btu @OnlyTheGhosts]
| + | |
− | {{tp|p=32285908|t=2020. Chloroquine and bafilomycin A mimic lysosomal storage disorders and impair mTORC1 signalling |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=32243785|t=2020. Embracing the Landscape of Therapeutics |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | {{tp|p=30993690|t=2019. Emerging viruses and current strategies for vaccine intervention |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=32099652|t=2020. Frontiers in antiviral therapy and immunotherapy |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=32259744|t=2020. DNA vaccines: prime time is now |pdf=|usr=}}
| + | |
− | {{tp|p=32387642|t=2020. Innovations in structure-based antigen design and immune monitoring for next generation vaccines |pdf=|usr=}}
| + | |
− | {{tp|p=C7163352|t=ä. Cell-Based Therapies for COVID-19: Proper Clinical Investigations are Essential |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=32382358|t=ä. COVID-19 and Diabetes Mellitus: May Old Anti-diabetic Agents Become the New Philosopher?s Stone?|pdf=|usr=}}
| + | |
− | {{tp|p=32377559|t=ä. COVID-19: Review of Epidemiology and Potential Treatments Against 2019 Novel Coronavirus |pdf=|usr=}}
| + | |
− | {{tp|p=32387262|t=ä. Extracellular vesicles from mesenchymal stem cells as a Covid-19 treatment |pdf=|usr=}}
| + | |
− | {{tp|p=C7194243|t=ä. Coronavirus Disease 2019 (COVID-19) Spread and Pharmacovigilance Implications: Expert Opinion |pdf=|usr=}}
| + | |
− | {{tp|p=32383008|t=ä. The Role of Pharmacovigilance and ISoP During the Global COVID-19 Pandemic |pdf=|usr=}}
| + | |
− | {{tp|p=32344202|t=2020. Impact of immune enhancement on Covid-19 polyclonal hyperimmune globulin therapy and vaccine development |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=C7118608|t=ä. A Promising Anti-Cytokine-Storm Targeted Therapy for COVID-19: The Artificial-Liver Blood-Purification System |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | {{tp|p=C7117595|t=ä. Drug repurposing strategies for COVID-19 |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=16022774|t=2005. (+)SARS Vaccine Development |pdf=|usr=}}
| + | |
− | {{tp|p=28861908|t=2017. (+)Issues in vaccinology: Present challenges and future directions |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=16433589|t=2006. (+)Antiviral applications of RNAi for coronavirus |pdf=|usr=}}
| + | |
− | {{tp|p=32318055|t=2020. Better Epitope Discovery, Precision Immune Engineering, and Accelerated Vaccine Design Using Immunoinformatics Tools |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=32362826|t=2020. Editorial: New Advances in RNA Targeting |pdf=|usr=}}
| + | |
− | {{tp|p=32201439|t=2020. Therapeutic options for the treatment of 2019-novel coronavirus: An evidence-based approach |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=32081774|t=2020. Discovery and development of safe-in-man broad-spectrum antiviral agents |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | {{tp|p=32386655|t=2020. Influence of immune aging on vaccine responses |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | {{tp|p=32281318|t=2020. Convalescent Plasma Therapy for Corona Virus Disease 2019: a Long Way to Go but Worth Trying |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=32105468|t=2020. Structure-Based Stabilization of Non-native Protein?Protein Interactions of Coronavirus Nucleocapsid Proteins in Antiviral Drug Design |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=16697221|t=2006. (+)Template-based coiled-coil antigens elicit neutralizing antibodies to the SARS-coronavirus |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=32388486|t=2020. Light as a potential treatment for pandemic coronavirus infections: A perspective |pdf=|usr=}}
| + | |
− | {{tp|p=C7202831|t=ä. Testing COVID-19 therapies to prevent progression of mild disease |pdf=|usr=}}
| + | |
− | {{tp|p=C7202844|t=ä. Vaccine development during global epidemics: the Zika experience |pdf=|usr=}}
| + | |
− | {{tp|p=32380023|t=ä. Immunomodulation in COVID-19 |pdf=|usr=}}
| + | |
− | {{tp|p=32444269|t=ä. Immunotherapies for COVID-19: lessons learned from sepsis |pdf=|usr=}}
| + | |
− | {{tp|p=32409074|t=2020. An overview of functional nanoparticles as novel emerging antiviral therapeutic agents |pdf=|usr=}}
| + | |
− | {{tp|p=C7190528|t=ä. Treatment Considerations for COVID-19: A Critical Review of the Evidence (or Lack Thereof) |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | {{tp|p=32373787|t=2020. A new paradigm for drug development |pdf=|usr=}}
| + | |
− | {{tp|p=32359447|t=2020. The resurgence of convalescent plasma therapy |pdf=|usr=}}
| + | |
− | {{tp|p=32325038|t=ä. (+)Safety and immunogenicity of a candidate Middle East respiratory syndrome coronavirus viral-vectored vaccine: a dose-escalation, open-label, non-randomised, uncontrolled, phase 1 trial |pdf=|usr=}}
| + | |
− | {{tp|p=32325036|t=ä. Two Middle East respiratory syndrome vaccines: first step for other coronavirus vaccines?|pdf=|usr=}}
| + | |
− | {{ttp|p=29329956|t=2018. Herd immunity: hyperimmune globulins for the 21st century |pdf=|usr=}}''megapool for the top useful human mab''
| + | |
− | {{tp|p=31351923|t=2019. (+)First clinical trial of a MERS coronavirus DNA vaccine |pdf=|usr=}}
| + | |
− | {{tp|p=28664850|t=2017. (+)Novel translational approaches to the search for precision therapies for acute respiratory distress syndrome |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=29852530|t=2020. The expanding role of mass spectrometry in the field of vaccine development |pdf=|usr=}}
| + | |
− | {{tp|p=31432544|t=2020. Repurposing approved drugs on the pathway to novel therapies |pdf=|usr=}}
| + | |
− | {{tp|p=31692019|t=2020. (+)Gold nanoparticle?adjuvanted S protein induces a strong antigen?specific IgG response against severe acute respiratory syndrome?related coronavirus infection, but fails to induce protective antibodies and limit eosinophilic infiltration in lungs |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=32197324|t=2020. A Review on Applications of Computational Methods in Drug Screening and Design |pdf=|usr=}}
| + | |
− | {{tp|p=20956884|t=2010. (+)Small Interfering RNA Effectively Inhibits the Expression of SARS Coronavirus Membrane Gene at Two Novel Targeting Sites |pdf=|usr=}}
| + | |
− | {{tp|p=32317764|t=ä. Developing therapeutic monoclonal antibodies at pandemic pace |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | {{tp|p=32387334|t=ä. The Forrest Gump approach to preventing severe COVID-19 ? reverse the predisposing pro-inflammatory state with exercise |pdf=|usr=}}
| + | |
− | {{tp|p=32376359|t=2020. Design of a peptide-based subunit vaccine against novel coronavirus SARS-CoV-2 |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=32382315|t=2020. Can graphene take part in the fight against COVID-19?|pdf=|usr=}}
| + | |
− | {{tp|p=32313660|t=2020. A short review on antibody therapy for COVID-19 |pdf=|usr=}}
| + | |
− | {{tp|p=32377399|t=2020. COVID-19 vaccines: breaking record times to first-in-human trials |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | {{tp|p=32380052|t=2020. Granulocyte-targeted therapies for airway diseases |pdf=|usr=}}
| + | |
− | {{tp|p=32389754|t=ä. (low dose radiat)RILI model and the Covid-19 pneumonia: The radiation oncologist point of view? |pdf=|usr=}}
| + | |
− | {{tp|p=32387544|t=ä. Response to: Low dose radiation therapy for COVID-19 pneumonia a double-edged sword? |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | {{tp|p=32448638|t=2020. Convalescent plasma, an apheresis research project targeting and motivating the fully recovered COVID 19 patients: A rousing message of clinical benefit to both donors and recipients alike |pdf=|usr=}}
| + | |
− | {{tp|p=32417123|t=ä. Convalescent plasma, an apheresis research project targeting and motivating the fully recovered COVID 19 patients: A rousing message of clinical benefit to both donors and recipients alike |pdf=|usr=}}
| + | |
− | {{tp|p=32418793|t=2020. An effective CTL peptide vaccine for Ebola Zaire Based on Survivors? CD8+ targeting of a particular nucleocapsid protein epitope with potential implications for COVID-19 vaccine design |pdf=|usr=}}
| + | |
− | {{tp|p=32381478|t=2020. Enabling emergency mass vaccination: Innovations in manufacturing and administration during a pandemic |pdf=|usr=}}
| + | |
− | {{tp|p=32452420|t=2020. Antiviral activity of lycorine against Zika virus in vivo and in vitro |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | {{tp|p=32061923|t=2020. Dipeptidyl peptidase 4 inhibitors and their potential immune modulatory functions |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | {{tp|p=32208449|t=2020. BRD4 inhibition exerts anti-viral activity through DNA damage-dependent innate immune responses |pdf=|usr=}}
| + | |
− | {{tp|p=32355446|t=2020. Medicaments rhumatologiques pour le traitement de l?infection par le COVID-19? |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=16043204|t=2005. (+)Long-term protection from SARS coronavirus infection conferred by a single immunization with an attenuated VSV-based vaccine |pdf=|usr=}}
| + | |
− | {{tp|p=31930543|t=2020. Inactivation of three emerging viruses ? severe acute respiratory syndrome coronavirus, Crimean?Congo haemorrhagic fever virus and Nipah virus ? in platelet concentrates by ultraviolet C light and in plasma by methylene blue plus visible light |pdf=|usr=}}
| + | |