|
|
(55 dazwischenliegende Versionen von einem Benutzer werden nicht angezeigt) |
Zeile 1: |
Zeile 1: |
− | {{pnc}} | + | {{gohome}} |
| + | {{ft|P}} |
| + | '''CHERRYPICKING STUDIES IS NOT SCIENCE |
| + | {{qt|Reviews on covid drug development}} |
| | | |
− | current items will be put into the subsections.
| |
− | subsections with contents are marked ''with content''.
| |
− | the others are pending data.
| |
| | | |
− | *[[reviews on covid drug development]] ''with content'' | + | *'''[[scouting ideas]]''' |
− | *
| + | |
| | | |
− | *[[Patients on biologicals]] | + | *'''[[PHA Biologicals]]''' |
− | *[[HMGB1, RAGE]]
| + | |
− | *[[pre-Interleukin 6]] ''with content''
| + | |
− | *[[post-Interleukin 6]]
| + | |
− | *[[pre-TNFalpha]]
| + | |
− | *[[post-TNFalpha]]
| + | |
− | *[[pre-Interleukin 17]]
| + | |
− | *[[post-Interleukin 17]]
| + | |
− | *[[pre-Interleukin 1]]
| + | |
− | *[[post-Interleukin 1]]
| + | |
− | *[[Inflammasome]]
| + | |
| | | |
− | *[[NK-kappaB]] | + | *'''[[PHA conventional pharmacology]]''' |
− | *[[STAT 3]]
| + | |
− | *[[JAK Janus Kinase]]
| + | |
− | *[[Corticosteroids]]
| + | |
− | *[[Cytokine absorbers]]
| + | |
− | *[[Target Complement system]]
| + | |
− | *[[Target Extracellular traps]]
| + | |
− | *[[Anticoagulant in covid19]]
| + | |
− | *[[Antioxidants]]
| + | |
− | *[[Stem cells]]
| + | |
− | *[[MDSC cells]]
| + | |
| | | |
| + | *'''[[PHA retargeted compounds]]''' |
| | | |
| + | *'''[[PHA antivirals by mechanism]]''' |
| | | |
− | *[[other single compounds]] | + | *'''[[PHA pharmacophore by screened target]]''' |
− | *[[Retargeted single compounds]]
| + | |
− | *[[Hydroxychloroquine]] ''with content''
| + | |
− | *
| + | |
| | | |
− | *[[other antiviral compounds]] | + | *'''[[PHA ImmunoNutrients]] |
− | *[[AV Remdesivir]]
| + | |
− | *[[AV Lopinavir]]
| + | |
− | *[[AV Ivermectin]]
| + | |
| | | |
− | *[[Target ACE2, Spike protein]] | + | *'''[[PHA compl altern natural]]''' |
− | *[[Target TMPRSS2, Spike protein]]
| + | |
| | | |
| + | *'''[[PHA within indications compounds]]''' |
| | | |
| + | *'''[[PHA Serum products]]''' |
| | | |
− | *[[Interferons]] | + | *'''[[PHA Vaccination]]''' |
| | | |
| + | PHA related options: |
| | | |
| + | *[[Radiation therapy]] |
| + | *[[Phototherapy]] |
| + | *[[Electric fields]] |
| + | *[[Treatment other concepts]] |
| | | |
− | *[[Vitamin D]]
| |
| | | |
− | *[[Statins]]
| + | A concept of curative retargeting has been found by cellular lockdown with kinase inhibitors from the oncologic pharmacopoiea. |
− | *[[Anorganic nutrients Magnesium]]
| + | This means, virus replication can be stalled to zero w/o need of develpoment of new substances. There is no need for world |
− | *[[Anorganic nutrients Selenium]]
| + | vaccination anymore. The virus needs permissible cells, and most perimissible is phosphotyrosine on its own compnents. |
− | *[[Anorganic nutrients Zinc]]
| + | Paper is (not yet in PubMed) : |
| | | |
| + | *'''[https://www.sciencedirect.com/science/article/pii/S1097276520305499?via%3Dihub Growth factor receptor signaling inhibition prevents SARS-CoV-2 replication at Mol Cell 2020/08/11]''' |
| + | credentials to [https://web.de/magazine/news/coronavirus/coronavirus-blockade-zellulaerer-kommunikation-forscher-stoppen-vermehrung-sars-cov-2-35045170 Marinus Brandl] who told us about it today. |
| + | based on e.g. |
| | | |
| + | {{ttp|p=32408336|t=2020. Proteomics of SARS-CoV-2-infected host cells reveals therapy targets |pdf=|usr=}} |
| | | |
− | *[[Traditional Chinese Medicine]]
| + | ======================================================================================= |
− | *[[Natural compounds]]
| + | |
| | | |
− | *[[Reconvalescent blood products, Passive vaccine]] ''with content''
| + | COVID19 is now a CURABLE disease !!! |
− | *[[Plasmapheresis]]
| + | |
| | | |
− | *[[Immunodeviation]] e.g. by adjuvants or other vaccinations
| + | ======================================================================================= |
− | *[[Active vaccine]] ''with cotent''
| + | |
− | | + | |
− | | + | |
− | {{tp|p=32162456|t=2020. Rapid Identification of Potential Inhibitors of SARS-CoV-2 Main Protease by Deep Docking of 1 3 Billion Compounds |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | '''Microbiome as target'''
| + | |
− | {{tp|p=32356654|t=ä. Considering the Effects of Microbiome and Diet on SARS-CoV-2 Infection: Nanotechnology Roles |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | '''stem cells'''
| + | |
− | {{tp|p=32257554|t=2020. Mesenchymal Stem Cell Infusion Shows Promise for Combating Coronavirus (COVID-19)- Induced Pneumonia |pdf=|usr=}}
| + | |
− | {{tp|p=32257537|t=2020. Transplantation of ACE2- Mesenchymal Stem Cells Improves the Outcome of Patients with COVID-19 Pneumonia |pdf=|usr=}}
| + | |
− | {{tp|p=32283815|t=2020. Mesenchymal Stromal Cell Secretome for Severe COVID-19 Infections: Premises for the Therapeutic Use |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | {{tp|p=32241793|t=2020. Clinical course of COVID-19 in a series of patients with chronic arthritis treated with immunosuppressive targeted therapies |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | '''CRISPR genome editing technology'''
| + | |
− | {{tp|p=32353252|t=ä. Development of CRISPR as an Antiviral Strategy to Combat SARS-CoV-2 and Influenza |pdf=|usr=}}
| + | |
− | | + | |
− | '''Virus interference'''
| + | |
− | {{tp|p=32071427|t=2020. Virus against virus: a potential treatment for 2019-nCov (SARS-CoV-2) and other RNA viruses |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | '''resilience enhancement'''
| + | |
− | {{tp|p=32229705|t=2020. Geroprotective and senoremediative strategies to reduce the comorbidity, infection rates, severity, and lethality in gerophilic and gerolavic infections |pdf=|usr=}}
| + | |
− | {{tp|p=32311498|t=ä. The impact of nutrition on COVID-19 susceptibility and long-term consequences |pdf=|usr=}}
| + | |
− | {{tp|p=32276453|t=2020. Exploring the Relevance of Senotherapeutics for the Current SARS-CoV-2 Emergency and Similar Future Global Health Threats |pdf=|usr=}}
| + | |
− | | + | |
− | '''psychoneuroimmunology'''
| + | |
− | {{tp|p=32234338|t=ä. Using psychoneuroimmunity against COVID-19 |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | '''Exercise'''
| + | |
− | {{tp|p=32311497|t=ä. The immunological case for staying active during the COVID-19 pandemic |pdf=|usr=}}
| + | |
− | | + | |
− | '''Topical agents''' opening up the world of nano...
| + | |
− | *[https://www.dailymail.co.uk/sciencetech/article-8315269/Commercial-mouthwash-prevent-COVID-19-transmission-scientists-say.html on mouth rinses]
| + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | ----
| + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | {{tp|p=32247038|t=2020. Potential effect of blood purification therapy in reducing cytokine storm as a late complication of critically ill COVID-19 |pdf=|usr=}}
| + | |
− | {{tp|p=32222466|t=2020. The use of anti-inflammatory drugs in the treatment of people with severe coronavirus disease 2019 (COVID-19): The Perspectives of clinical immunologists from China |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | {{tp|p=32266375|t=ä. Inquiring into Benefits of Independent Activation of Non-Classical Renin-Angiotensin System in the Clinical Prognosis and Reduction of COVID-19 mortality |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | {{tp|p=32305181|t=ä. ESPEN expert statements and practical guidance for nutritional management of individuals with SARS-CoV-2 infection |pdf=|usr=}}
| + | |
− | {{tp|p=32360083|t=ä. Modulation of Hb-O2 affinity to improve hypoxemia in COVID-19 patients |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=32277367|t=ä. Rheumatologists? perspective on coronavirus disease 19 (COVID-19) and potential therapeutic targets |pdf=|usr=}}
| + | |
− | {{tp|p=32373721|t=2020. Low dose lung radiotherapy for COVID-19 pneumonia The rationale for a cost-effective anti-inflammatory treatment |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | {{tp|p=32241301|t=2020. A novel treatment approach to the novel coronavirus: an argument for the use of therapeutic plasma exchange for fulminant COVID-19 |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=32318324|t=ä. Depriving Iron Supply to the Virus Represents a Promising Adjuvant Therapeutic Against Viral Survival |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | {{tp|p=32360420|t=ä. Cytokine storm intervention in the early stages of COVID-19 pneumonia |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | | + | |
− | {{tp|p=32335366|t=2020. Can dapagliflozin have a protective effect against COVID-19 infection? A hypothesis |pdf=|usr=}}
| + | |
− | {{tp|p=32333972|t=ä. Letter to the Editor in response to the article ?COVID-19 and diabetes: Can DPP4 inhibition play a role?? |pdf=|usr=}}
| + | |
− | {{tp|p=32333966|t=2020. COVID-19 and diabetes: Is this association driven by the DPP4 receptor? Potential clinical and therapeutic implications |pdf=|usr=}}
| + | |
− | {{tp|p=32333969|t=ä. Response to COVID -19 and Diabetes: Can DPP4 Inhibition Play a Role? ? GLP-1 Might Play One Too |pdf=|usr=}}
| + | |
− | {{tp|p=32283128|t=ä. Should anti-diabetic medications be reconsidered amid COVID-19 pandemic?|pdf=|usr=}} ''on ace2 via adam17, nfkb via dpp4''
| + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | {{tp|p=32325124|t=ä. Vaporization, bioactive formulations and a marine natural product: different perspectives on antivirals |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | {{tp|p=32249203|t=ä. Microneedle array delivered recombinant coronavirus vaccines: Immunogenicity and rapid translational development |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | {{tp|p=32333818|t=2020. COVID-19: lambda interferon against viral load and hyperinflammation |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=32228222|t=2020. Renin-angiotensin system inhibitors improve the clinical outcomes of COVID-19 patients with hypertension |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=C7118608|t=ä. A Promising Anti-Cytokine-Storm Targeted Therapy for COVID-19: The Artificial-Liver Blood-Purification System |pdf=|usr=}}
| + | |
− | {{tp|p=32065055|t=2020. Potent binding of 2019 novel coronavirus spike protein by a SARS coronavirus-specific human monoclonal antibody |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=32292627|t=ä. Clinical study of mesenchymal stem cell treating acute respiratory distress syndrome induced by epidemic Influenza A (H7N9) infection, a hint for COVID-19 treatment |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | {{tp|p=32347925|t=ä. Statin therapy in COVID-19 infection |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=32337546|t=ä. Colchicine as a potent anti-inflammatory treatment in COVID-19: can we teach an old dog new tricks?|pdf=|usr=}}
| + | |
− | {{tp|p=32282032|t=ä. Neprilysin inhibitor?angiotensin II receptor blocker combination (sacubitril/valsartan): rationale for adoption in SARS-CoV-2 patients |pdf=|usr=}}
| + | |
− | {{tp|p=32285293|t=ä. Searching therapeutic strategy of new coronavirus pneumonia from angiotensin-converting enzyme 2: the target of COVID-19 and SARS-CoV |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | {{tp|p=32265310|t=ä. Current Status of Cell-Based Therapies for Respiratory Virus Infections: Applicability to COVID-19 |pdf=|usr=}}
| + | |
− | {{tp|p=32271462|t=2020. Inositol and pulmonary function Could myo-inositol treatment downregulate inflammation and cytokine release syndrome in SARS-CoV-2?|pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | {{tp|p=32329380|t=2020. Adipose-derived stromal stem cells (ASCs) as a new regenerative immediate therapy combating coronavirus (COVID-19)-induced pneumonia |pdf=|usr=}}
| + | |
− | {{tp|p=32312129|t=2020. The role of additive manufacturing and antimicrobial polymers in the COVID-19 pandemic |pdf=|usr=}}
| + | |
− | {{tp|p=32117569|t=2020. Therapeutic strategies in an outbreak scenario to treat the novel coronavirus originating in Wuhan, China |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | {{tp|p=32251729|t=ä. The Greek study in the effects of colchicine in COvid-19 complications prevention (GRECCO-19 study): Rationale and study design |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | {{tp|p=32247692|t=ä. Faecal-oral transmission of SARS-COV-2: practical implications |pdf=|usr=}}
| + | |
− | {{tp|p=32367287|t=ä. New evidence of SARS-CoV-2 transmission through the ocular surface |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | {{tp|p=32251365|t=ä. Considering mutational meltdown as a potential SARS-CoV-2 treatment strategy |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=32186952|t=2020. COVID-19, an emerging coronavirus infection: advances and prospects in designing and developing vaccines, immunotherapeutics, and therapeutics |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | {{tp|p=32366728|t=2020. Medical Education During the COVID-19 Pandemic: A Single Institution Experience |pdf=|usr=}}
| + | |
− | {{tp|p=32366726|t=2020. Management of Asthma in Children during COVID-19 Pandemic |pdf=|usr=}}
| + | |
− | {{tp|p=32366725|t=2020. COVID -19 Pandemic: The Challenges for Pediatric Oncology |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | {{tp|p=32341599|t=2020. Is Immuno-modulation the Key to COVID-19 Pandemic?|pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | {{tp|p=32328406|t=ä. Vaccines for SARS-CoV-2: Lessons from Other Coronavirus Strains |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | {{tp|p=32272396|t=ä. The Possible of Immunotherapy for COVID-19: a Systematic Review |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | {{tp|p=32234466|t=ä. Coronavirus disease 2019 (COVID-19): current status and future perspectives |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | {{tp|p=32283177|t=ä. Coronavirus (COVID-19), First Indication of Efficacy of Gene-Eden-VIR/Novirin in SARS-CoV-2 Infections |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | {{tp|p=32226290|t=2020. Targeting the Endocytic Pathway and Autophagy Process as a Novel Therapeutic Strategy in COVID-19 |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | *[https://www.infowars.com/experts-suggest-90-million-oxford-university-coronavirus-vaccine-doesnt-work/ Oxford vaccine failed in monkeys]
| + | |
− | {{tp|p=32305009|t=ä. Investigating hypothiocyanite against SARS-CoV-2 |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | {{tp|p=32354030|t=2020. Functional Role of Dietary Intervention to Improve the Outcome of COVID-19: A Hypothesis of Work |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | | + | |
− | {{tp|p=32368489|t=2020. The pathogenesis and alternative treatment of SARS-CoV2 |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | *[https://www.nature.com/articles/d41573-020-00073-5 Nature: The COVID-19 vaccine development landscape]
| + | |
− | | + | |
− | | + | |
− | | + | |
− | {{tp|p=32336674|t=ä. COVID-19 Emergency Responders in FDA?s Center for Drug Evaluation and Research |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | {{tp|p=32317220|t=ä. The anti-viral facet of anti-rheumatic drugs: Lessons from COVID-19 |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | {{tp|p=32326602|t=2020. Pharmacological Therapeutics Targeting RNA-Dependent RNA Polymerase, Proteinase and Spike Protein: From Mechanistic Studies to Clinical Trials for COVID-19 |pdf=|usr=}}
| + | |
− | {{tp|p=32326426|t=2020. COVID-19: A Recommendation to Examine the Effect of Mouthrinses with beta-Cyclodextrin Combined with Citrox in Preventing Infection and Progression |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | {{tp|p=32359878|t=2020. Application of plasma exchange in association with higher dose CVVH in Cytokine Storm Complicating COVID-19 |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=32171450|t=2020. Identification of potential cross-protective epitope between a new type of coronavirus (2019-nCoV) and severe acute respiratory syndrome virus |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=32373322|t=ä. Fighting COVID-19 with water |pdf=|usr=}}''dehydration of mucous glycans''
| + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | {{tp|p=32293807|t=2020. Systematic review of the efficacy and safety of antiretroviral drugs against SARS, MERS or COVID?19: initial assessment |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | {{tp|p=32356252|t=ä. COVID-19: Therapeutics and Their Toxicities |pdf=|usr=}}
| + | |
− | {{tp|p=32356251|t=ä. Medical Toxicology and COVID-19: Our Role in a Pandemic |pdf=|usr=}}
| + | |
− | {{tp|p=32052466|t=2020. Potential interventions for novel coronavirus in China: A systematic review |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | {{tp|p=32346490|t=ä. Structural elucidation of SARS-CoV-2 vital proteins: Computational methods reveal potential drug candidates against main protease, Nsp12 polymerase and Nsp13 helicase |pdf=|usr=}}
| + | |
− | {{tp|p=32324533|t=2020. Prevention and therapy of COVID-19 via exogenous estrogen treatment for both male and female patients |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=32291198|t=2020. Impact of Nutrition and Diet on COVID-19 Infection and Implications for Kidney Health and Kidney Disease Management |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | {{tp|p=32321635|t=2020. Old and new antirheumatic drugs for the treatment of COVID-19 |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=32317113|t=2020. COVID-19 therapeutic options for patients with kidney disease |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | {{tp|p=32035018|t=2020. Reducing mortality from 2019-nCoV: host-directed therapies should be an option |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | {{tp|p=32220278|t=2020. Immunosuppression for hyperinflammation in COVID-19: a double-edged sword?|pdf=|usr=}}
| + | |
− | {{tp|p=32353328|t=2020. What policy makers need to know about COVID-19 protective immunity |pdf=|usr=}}
| + | |
− | {{tp|p=32305088|t=2020. Flooded by the torrent: the COVID-19 drug pipeline |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=32339473|t=ä. Probiotics and COVID-19: one size does not fit all |pdf=|usr=}}
| + | |
− | {{tp|p=32199468|t=ä. Use of antiviral drugs to reduce COVID-19 transmission |pdf=|usr=}}
| + | |
− | {{tp|p=32278361|t=ä. Attention should be paid to venous thromboembolism prophylaxis in the management of COVID-19 |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=32325035|t=ä. Plea for multitargeted interventions for severe COVID-19 |pdf=|usr=}}
| + | |
− | {{tp|p=32113510|t=2020. Convalescent plasma as a potential therapy for COVID-19 |pdf=|usr=}}
| + | |
− | {{tp|p=32113509|t=2020. COVID-19: combining antiviral and anti-inflammatory treatments |pdf=|usr=}}
| + | |
− | {{tp|p=32368737|t=2020. Preventing COVID-19-induced pneumonia with anticytokine therapy |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | {{tp|p=32278693|t=2020. In silico studies on therapeutic agents for COVID-19: Drug repurposing approach |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | {{tp|p=32198163|t=2020. Hiding in Plain Sight: an Approach to Treating Patients with Severe COVID-19 Infection |pdf=|usr=}}
| + | |
− | {{tp|p=32265331|t=2020. Single-Dose, Intranasal Immunization with Recombinant Parainfluenza Virus 5 Expressing Middle East Respiratory Syndrome Coronavirus (MERS-CoV) Spike Protein Protects Mice from Fatal MERS-CoV Infection |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=32296777|t=2020. Mesenchymal stem cells and management of COVID-19 pneumonia |pdf=|usr=}}
| + | |
− | {{tp|p=32289117|t=2020. Novel decoy cellular vaccine strategy utilizing transgenic antigen-expressing cells as immune presenter and adjuvant in vaccine prototype against SARS-CoV-2 virus |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | {{tp|p=32292909|t=2020. Target Virus or Target Ourselves for COVID-19 Drugs Discovery?-Lessons learned from anti-influenzas virus therapies |pdf=|usr=}}
| + | |
− | {{tp|p=32220710|t=2020. Renin-angiotensin system: The unexpected flaw inside the human immune system revealed by SARS-CoV-2 |pdf=|usr=}}
| + | |
− | | + | |
− | *''riociguat?''
| + | |
− | | + | |
− | {{tp|p=32353740|t=2020. Serum albumin-mediated strategy for the effective targeting of SARS-CoV-2 |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | | + | |
− | {{tp|p=32344313|t=ä. Can pioglitazone be potentially useful therapeutically in treating patients with covid-19?|pdf=|usr=}}
| + | |
− | {{tp|p=32344312|t=2020. Potential effect of natural and anabolizan steroids in elderly patient with COVID-19 |pdf=|usr=}}
| + | |
− | {{tp|p=32344310|t=2020. Respiratory conditions in coronavirus disease 2019 (COVID-19): Important considerations regarding novel treatment strategies to reduce mortality |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | {{tp|p=32339777|t=2020. May IL-17 have a role in COVID-19 infection?|pdf=|usr=}}
| + | |
− | {{tp|p=32335456|t=2020. The old but new: Can unfractioned heparin and low molecular weight heparins inhibit proteolytic activation and cellular internalization of SARS-CoV2 by inhibition of host cell proteases?|pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=C7158785|t=ä. Convalescent plasma: A possible treatment of COVID-19 in India |pdf=|usr=}}
| + | |
− | {{tp|p=32353355|t=ä. Testosterone, a key hormone in the context of COVID-19 pandemic |pdf=|usr=}}
| + | |
− | {{tp|p=32370766|t=2020. Role of adjunctive treatment strategies in COVID-19 and a review of international and national clinical guidelines |pdf=|usr=}}
| + | |
− | {{tp|p=32307014|t=2020. Chinese expert consensus on diagnosis and treatment of coagulation dysfunction in COVID-19 |pdf=|usr=}}
| + | |
− | {{tp|p=32255312|t=2020. A possible probiotic (S salivarius K12) approach to improve oral and lung microbiotas and raise defenses against SARS-CoV-2 |pdf=|usr=}}
| + | |
− | {{tp|p=32365556|t=2020. Pharmacological (or Synthetic) and Nutritional Agonists of PPAR-gamma as Candidates for Cytokine Storm Modulation in COVID-19 Disease |pdf=|usr=}}
| + | |
− | {{tp|p=32231348|t=2020. Emerging prophylaxis strategies against COVID-19 |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | {{tp|p=32187463|t=ä. Covid-19 ? The Search for Effective Therapy |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=32354113|t=2020. On Facing the SARS-CoV-2 (COVID-19) with Combination of Nanomaterials and Medicine: Possible Strategies and First Challenges |pdf=|usr=}}
| + | |
− | {{tp|p=32326343|t=2020. Can Nanotechnology and Materials Science Help the Fight against SARS-CoV-2?|pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=32203437|t=ä. Insights from nanomedicine into chloroquine efficacy against COVID-19 |pdf=|usr=}}
| + | |
− | | + | |
− | | + | |
− | {{tp|p=32296135|t=ä. COVID-19: risk for cytokine targeting in chronic inflammatory diseases?|pdf=|usr=}}
| + | |
− | {{tp|p=32355330|t=ä. Inactivated vaccine for SARS-CoV-2 |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=32346092|t=ä. Cancer therapy tool informs COVID-19 vaccines |pdf=|usr=}}
| + | |
− | {{tp|p=32346094|t=ä. COVID-19 vaccine design: the Janus face of immune enhancement |pdf=|usr=}}
| + | |
− | {{tp|p=32317716|t=ä. The potential danger of suboptimal antibody responses in COVID-19 |pdf=|usr=}}
| + | |
− | *[https://www.biorxiv.org/content/10.1101/2020.03.22.002386v3 A SARS-CoV-2-Human Protein-Protein Interaction Map Reveals Drug Targets and Potential Drug-Repurposing]
| + | |
− | | + | |
− | | + | |
− | | + | |
− | {{tp|p=32341531|t=ä. Could BCG be used to protect against COVID-19?|pdf=|usr=}}
| + | |
− | {{tp|p=32291449|t=ä. ADAM17 inhibition may exert a protective effect on COVID-19 |pdf=|usr=}}
| + | |
− | {{tp|p=32350818|t=ä. Chloroquine-induced QTc prolongation in COVID-19 patients |pdf=|usr=}}
| + | |
− | *[https://theconversation.com/we-found-and-tested-47-old-drugs-that-might-treat-the-coronavirus-results-show-promising-leads-and-a-whole-new-way-to-fight-covid-19-136789 dextrometorphan (antitussive compd)]
| + | |
− | {{tp|p=32322402|t=2020. Review on the global epidemiological situation and the efficacy of chloroquine and hydroxychloroquine for the treatment of COVID-19 |pdf=|usr=}}
| + | |
− | {{tp|p=32355564|t=2020. Consideration of dornase alfa for the treatment of severe COVID-19 acute respiratory distress syndrome |pdf=|usr=}}
| + | |
− | {{tp|p=32322397|t=2020. Potential use of hydroxychloroquine, ivermectin and azithromycin drugs in fighting COVID-19: trends, scope and relevance |pdf=|usr=}}
| + | |
− | {{tp|p=32313660|t=2020. A short review on antibody therapy for COVID-19 |pdf=|usr=}}
| + | |
− | {{tp|p=32372835|t=2020. Trials of BCG vaccine will test for covid-19 protection |pdf=|usr=}}
| + | |
− | {{tp|p=32287799|t=2020. Drug trials under way |pdf=|usr=}}
| + | |
− | {{tp|p=32353120|t=ä. Does Cigarette Smoking Protect Against SARS-CoV-2 Infection?|pdf=|usr=}}
| + | |
− | {{tp|p=32242236|t=ä. COVID-19 and Smoking |pdf=|usr=}}
| + | |
− | {{tp|p=32194995|t=2020. The outbreak of SARS-CoV-2 pneumonia calls for viral vaccines |pdf=|usr=}}
| + | |
− | {{tp|p=32340216|t=2020. Optimal Nutritional Status for a Well-Functioning Immune System Is an Important Factor to Protect against Viral Infections |pdf=|usr=}}
| + | |
− | {{tp|p=32252338|t=2020. Evidence that Vitamin D Supplementation Could Reduce Risk of Influenza and COVID-19 Infections and Deaths |pdf=|usr=}}
| + | |
− | {{tp|p=32342019|t=ä. Exercise against SARS-CoV-2 (COVID-19): Does workout intensity matter? (A mini review of some indirect evidence related to obesity) |pdf=|usr=}}
| + | |
− | {{tp|p=32258351|t=2020. Current knowledge about the antivirals remdesivir (GS-5734) and GS-441524 as therapeutic options for coronaviruses |pdf=|usr=}}
| + | |
− | {{tp|p=32258207|t=2020. High-Dose Intravenous Immunoglobulin as a Therapeutic Option for Deteriorating Patients With Coronavirus Disease 2019 |pdf=|usr=}}
| + | |
− | {{tp|p=32363212|t=ä. Review: Hydroxychloroquine and Chloroquine for Treatment of SARS-CoV-2 (COVID-19) |pdf=|usr=}}
| + | |
− | {{tp|p=32292817|t=2020. Coalition: Advocacy for prospective clinical trials to test the post-exposure potential of hydroxychloroquine against COVID-19 |pdf=|usr=}}
| + | |
− | {{tp|p=32284951|t=2020. Coronavirus Disease 2019 Treatment: A Review of Early and Emerging Options |pdf=|usr=}}
| + | |
− | {{tp|p=32214286|t=2020. Expanded Umbilical Cord Mesenchymal Stem Cells (UC-MSCs) as a Therapeutic Strategy in Managing Critically Ill COVID-19 Patients: The Case for Compassionate Use |pdf=|usr=}}
| + | |
− | {{tp|p=32098302|t=2020. Emergence of Novel Coronavirus 2019-nCoV: Need for Rapid Vaccine and Biologics Development |pdf=|usr=}}
| + | |
− | {{tp|p=32357471|t=2020. Feasibility of Known RNA Polymerase Inhibitors as Anti-SARS-CoV-2 Drugs |pdf=|usr=}}
| + | |
− | {{tp|p=32333199|t=ä. Coronavirus in Hematologic Malignancies: Targeting Molecules Beyond the Angiotensin-Converting Enzyme 2 (ACE2) Wall in COVID-19 |pdf=|usr=}}
| + | |
− | {{tp|p=32307559|t=ä. Management for patients with pediatric surgical disease during the COVID-19 epidemic |pdf=|usr=}}
| + | |
− | {{tp|p=32215760|t=2020. Tilorone: a Broad-Spectrum Antiviral Invented in the USA and Commercialized in Russia and beyond |pdf=|usr=}}
| + | |
− | {{tp|p=32245264|t=2020. Emetine, Ipecac, Ipecac Alkaloids and Analogues as Potential Antiviral Agents for Coronaviruses |pdf=|usr=}}
| + | |
− | {{tp|p=32290348|t=2020. COVID-19: A Brief Overview of the Discovery Clinical Trial |pdf=|usr=}}
| + | |
− | {{tp|p=32371086|t=ä. The pros and cons of traditional Chinese medicines in the treatment of COVID-19 |pdf=|usr=}}
| + | |
− | {{tp|p=32145402|t=2020. Traditional Chinese medicine for COVID-19 treatment |pdf=|usr=}}
| + | |
− | {{tp|p=32205232|t=2020. Lianhuaqingwen exerts anti-viral and anti-inflammatory activity against novel coronavirus (SARS-CoV-2) |pdf=|usr=}}
| + | |
− | {{tp|p=32360585|t=ä. Current targeted therapeutics against COVID-19: based on first-line experience in china |pdf=|usr=}}
| + | |
− | {{tp|p=32360584|t=ä. Possible use of the mucolytic drug, bromhexine hydrochloride, as a prophylactic agent against SARS-CoV-2 infection based on its action on the Transmembrane Serine Protease 2 |pdf=|usr=}}
| + | |
− | {{tp|p=32360583|t=ä. Efficacy and safety of current therapeutic options for COVID-19 - lessons to be learnt from SARS and MERS epidemic: A systematic review and meta-analysis |pdf=|usr=}}
| + | |
− | {{tp|p=32360581|t=ä. Nitazoxanide/Azithromycin combination for COVID-19: A suggested new protocol for COVID-19 early management |pdf=|usr=}}
| + | |
− | {{tp|p=32360580|t=ä. Liu Shen capsule shows antiviral and anti-inflammatory abilities against novel coronavirus SARS-CoV-2 via suppression of NF-kappaB signaling pathway |pdf=|usr=}}
| + | |
− | {{tp|p=32251726|t=2020. The use of Traditional Chinese Medicines to treat SARS-CoV-2 may cause more harm than good |pdf=|usr=}}
| + | |
− | {{tp|p=32251725|t=ä. Reply to ?The use of traditional Chinese medicines to treat SARS-CoV-2 may cause more harm than good? |pdf=|usr=}}
| + | |
− | {{tp|p=32360484|t=2020. Chemical composition and pharmacological mechanism of Qingfei Paidu Decoction and Ma Xing Shi Gan Decoction against Coronavirus Disease 2019 (COVID-19): In silico and experimental study |pdf=|usr=}}
| + | |
− | {{tp|p=32360480|t=ä. Candidate drugs against SARS-CoV-2 and COVID-19 |pdf=|usr=}}
| + | |
− | {{tp|p=32334052|t=2020. Repurposing the mucolytic cough suppressant and TMPRSS2 protease inhibitor bromhexine for the prevention and management of SARS-CoV-2 infection |pdf=|usr=}}
| + | |
− | {{tp|p=32325127|t=2020. Darunavir does not prevent SARS-CoV-2 infection in HIV patients |pdf=|usr=}}
| + | |
− | {{tp|p=32247821|t=2020. 3CLpro inhibitors as a potential therapeutic option for COVID-19: Available evidence and ongoing clinical trials |pdf=|usr=}}
| + | |
− | {{tp|p=32302707|t=ä. Could IL-17 represent a new therapeutic target for the treatment and/or management of COVID-19-related respiratory syndrome?: This paper is dedicated to Sofia Maione born during COVID-19 outbreak |pdf=|usr=}}
| + | |
− | {{tp|p=32283223|t=2020. Plausibility of therapeutic effects of Rho kinase inhibitors against Severe Acute Respiratory Syndrome Coronavirus 2 (COVID-19) |pdf=|usr=}}
| + | |
− | {{tp|p=32322486|t=2020. Intravenous vitamin C for reduction of cytokines storm in acute respiratory distress syndrome |pdf=|usr=}}
| + | |
− | {{tp|p=32369479|t=2020. Antibody-based therapies for COVID-19: Can Europe move faster?|pdf=|usr=}}
| + | |
− | {{tp|p=32343686|t=2020. Pandemic responses: Planning to neutralize SARS-CoV-2 and prepare for future outbreaks |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=32054787|t=2020. Prophylactic and therapeutic remdesivir (GS-5734) treatment in the rhesus macaque model of MERS-CoV infection |pdf=|usr=}}
| + | |
− | {{tp|p=32253318|t=2020. Effectiveness of convalescent plasma therapy in severe COVID-19 patients |pdf=|usr=}}
| + | |
− | {{tp|p=32229574|t=2020. News Feature: Avoiding pitfalls in the pursuit of a COVID-19 vaccine |pdf=|usr=}}
| + | |
− | {{tp|p=32275753|t=ä. Plasminogen improves lung lesions and hypoxemia in patients with COVID-19 |pdf=|usr=}}
| + | |
− | {{tp|p=32342871|t=ä. Is low dose radiation therapy a potential treatment for COVID-19 pneumonia?|pdf=|usr=}}
| + | |
− | {{tp|p=32342874|t=ä. Low dose radiation therapy for COVID-19 pneumonia: a double-edged sword |pdf=|usr=}}
| + | |
− | {{tp|p=32327397|t=ä. Safety signals for QT prolongation or Torsades de Pointes associated with azithromycin with or without chloroquine or hydroxychloroquine |pdf=|usr=}}
| + | |
− | {{ttp|p=32322478|t=2020. Efficacy of glutathione therapy in relieving dyspnea associated with COVID-19 pneumonia: A report of 2 cases |pdf=|usr=}}
| + | |
− | {{tp|p=32354685|t=ä. Why choose cyclosporin A as first-line therapy in COVID-19 pneumonia |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=32239125|t=2020. Remdesivir, la esperanza antiviral frente al SARS-CoV-2 |pdf=|usr=}}
| + | |
− | {{tp|p=32256547|t=2020. Clinical trials on drug repositioning for COVID-19 treatment |pdf=|usr=}}
| + | |
− | {{tp|p=32267301|t=ä. Driving forces for COVID-19 clinical trials using chloroquine: the need to choose the right research questions and outcomes |pdf=|usr=}}
| + | |
− | {{tp|p=32232552|t=ä. Coronavirus disease 2019 (COVID-19) and anti-rheumatic drugs |pdf=|usr=}}
| + | |
− | {{tp|p=32124179|t=ä. Clinical trials for the treatment of Coronavirus disease 2019 (COVID-19): A rapid response to urgent need |pdf=|usr=}}
| + | |
− | {{tp|p=32376987|t=2020. Inhibition of Influenza A virus propagation by benzoselenoxanthenes stabilizing TMPRSS2 Gene G-quadruplex and hence down-regulating TMPRSS2 expression |pdf=|usr=}}
| + | |
− | {{tp|p=32278175|t=ä. COVID-19: A promising cure for the global panic |pdf=|usr=}}
| + | |
− | {{tp|p=32253226|t=ä. (β-D-N4-hydroxycytidine (NHC, EIDD-1931) An orally bioavailable broad-spectrum antiviral inhibits SARS-CoV-2 in human airway epithelial cell cultures and multiple coronaviruses in mice |pdf=|usr=}}
| + | |
− | {{tp|p=32358203|t=ä. Structural basis for inhibition of the RNA-dependent RNA polymerase from SARS-CoV-2 by remdesivir |pdf=|usr=}}
| + | |
− | {{tp|p=32198291|t=2020. Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved ?-ketoamide inhibitors |pdf=|usr=}}
| + | |
− | {{tp|p=32321856|t=ä. Structure-based design of antiviral drug candidates targeting the SARS-CoV-2 main protease |pdf=|usr=}}
| + | |
− | {{tp|p=32347055|t=2020. Role of cyclophilin A during coronavirus replication and the antiviral activities of its inhibitors |pdf=|usr=}}
| + | |
− | {{tp|p=32341331|t=2020. A retrospective cohort study of methylprednisolone therapy in severe patients with COVID-19 pneumonia |pdf=|usr=}}
| + | |
− | {{tp|p=32347054|t=2020. Strategies for vaccine development of COVID-19 |pdf=|usr=}}
| + | |
− | {{tp|p=32133159|t=2020. Potential benefits of precise corticosteroids therapy for severe 2019-nCoV pneumonia |pdf=|usr=}}
| + | |
− | {{tp|p=32366290|t=2020. Mesenchymal stem cells as a potential therapy for COVID-19 |pdf=|usr=}}
| + | |
− | {{tp|p=C7110269|t=ä. COVID-19 Outbreak: an Update on Therapeutic Options |pdf=|usr=}}
| + | |
− | {{tp|p=32307653|t=ä. CD147 as a Target for COVID-19 Treatment: Suggested Effects of Azithromycin and Stem Cell Engagement |pdf=|usr=}}
| + | |
− | {{tp|p=32281052|t=ä. Mesenchymal Stem Cell Therapy for COVID-19: Present or Future |pdf=|usr=}}
| + | |
− | {{tp|p=32320535|t=2020. Mesenchymal stem cells as a potential treatment for critically ill patients with coronavirus disease 2019 |pdf=|usr=}}
| + | |
− | {{tp|p=32362735|t=ä. Insights into the inhibitory potential of selective phytochemicals against Mpro of 2019-nCoV: a computer-aided study |pdf=|usr=}}
| + | |
− | {{tp|p=32347963|t=2020. An independent appraisal and re-analysis of hydroxychloroquine treatment trial for COVID-19 |pdf=|usr=}}
| + | |
− | {{tp|p=32343358|t=2020. Immunoglobulins or convalescent plasma to tackle COVID-19: buying time to save lives - current situation and perspectives |pdf=|usr=}}
| + | |
− | {{tp|p=32328234|t=2020. Does the direct renin inhibitor have a role to play in attenuating severity of the outbreak coronavirus disease 2019 (COVID-19)?|pdf=|usr=}}
| + | |
− | {{tp|p=32360140|t=ä. Bee venom and SARS-CoV-2 |pdf=|usr=}}
| + | |
− | {{tp|p=32345485|t=ä. Treatment for emerging viruses: Convalescent plasma and COVID-19 |pdf=|usr=}}
| + | |
− | {{tp|p=32359789|t=ä. COVID-19 Convalescent Plasma: Now Is the Time for Better Science |pdf=|usr=}}
| + | |
− | {{tp|p=32359788|t=ä. Convalescent Plasma: Therapeutic Hope or Hopeless Strategy in the SARS-CoV-2 Pandemic |pdf=|usr=}}
| + | |
− | {{tp|p=32289548|t=2020. Clinical and microbiological effect of a combination of hydroxychloroquine and azithromycin in 80 COVID-19 patients with at least a six-day follow up: A pilot observational study |pdf=|usr=}}
| + | |
− | {{tp|p=32247925|t=ä. Repurposing antimalarials and other drugs for COVID-19 |pdf=|usr=}}
| + | |
− | {{tp|p=32145386|t=ä. Remdesivir as a possible therapeutic option for the COVID-19 |pdf=|usr=}}
| + | |
− | {{tp|p=32334088|t=ä. SARS-CoV-2 and COVID-19: What are our options? Where should we focus our attention on to find new drugs and strategies?|pdf=|usr=}}
| + | |
− | {{tp|p=32325121|t=ä. Tocilizumab: A new opportunity in the possible therapeutic arsenal against COVID-19 |pdf=|usr=}}
| + | |
− | {{tp|p=32247927|t=ä. Remdesivir for severe acute respiratory syndrome coronavirus 2 causing COVID-19: An evaluation of the evidence |pdf=|usr=}}
| + | |
− | {{tp|p=32249063|t=ä. Neutralizing Antibodies against SARS-CoV-2 and Other Human Coronaviruses |pdf=|usr=}}
| + | |
− | {{tp|p=32362491|t=ä. Neutralizing Antibodies against SARS-CoV-2 and Other Human Coronaviruses: (Trends in Immunology 41, 355?359; 2020) |pdf=|usr=}}
| + | |
− | {{tp|p=32294562|t=ä. A search for medications to treat COVID-19 via in silico molecular docking models of the SARS-CoV-2 spike glycoprotein and 3CL protease |pdf=|usr=}}
| + | |
− | {{tp|p=32371057|t=ä. Potential applications of plant biotechnology against SARS-CoV-2 |pdf=|usr=}}
| + | |
− | {{tp|p=32291112|t=ä. Ongoing Clinical Trials for the Management of the COVID-19 Pandemic |pdf=|usr=}}
| + | |
− | {{tp|p=32299202|t=2020. COVID-19, immune system response, hyperinflammation and repurposing antirheumatic drugs|pdf=|usr=}}
| + | |
− | {{tp|p=32293834|t=2020. Antiviral treatment of COVID-19|pdf=|usr=}}
| + | |
− | {{tp|p=32295153|t=2020. What Does Plant-Based Vaccine Technology Offer to the Fight against COVID-19?|pdf=|usr=}}
| + | |
− | {{tp|p=32235387|t=2020. Progress and Prospects on Vaccine Development against SARS-CoV-2 |pdf=|usr=}}
| + | |
− | {{tp|p=32034638|t=ä. Compensation of ACE2 Function for Possible Clinical Management of 2019-nCoV-Induced Acute Lung Injury |pdf=|usr=}}
| + | |
− | {{tp|p=32297156|t=ä. Computational Identification of Small Interfering RNA Targets in SARS-CoV-2 |pdf=|usr=}}
| + | |
− | {{tp|p=32360300|t=ä. Natural product-derived phytochemicals as potential agents against coronaviruses: a review |pdf=|usr=}}
| + | |
− | {{tp|p=32363219|t=ä. Binding site analysis of potential protease inhibitors of COVID-19 using AutoDock |pdf=|usr=}}
| + | |
− | {{tp|p=32106567|t=2020. Preliminary Identification of Potential Vaccine Targets for the COVID-19 Coronavirus (SARS-CoV-2) Based on SARS-CoV Immunological Studies |pdf=|usr=}}
| + | |
− | {{tp|p=32098094|t=2020. Structural Basis for Inhibiting Porcine Epidemic Diarrhea Virus Replication with the 3C-Like Protease Inhibitor GC376 |pdf=|usr=}}
| + | |
− | {{tp|p=32272550|t=2020. Antiviral Agents: Discovery to Resistance |pdf=|usr=}}
| + | |
− | {{tp|p=32268515|t=2020. In Silico Discovery of Candidate Drugs against Covid-19 |pdf=|usr=}}
| + | |
− | {{tp|p=32357553|t=2020. Repurposing Antiviral Protease Inhibitors Using Extracellular Vesicles for Potential Therapy of COVID-19 |pdf=|usr=}}
| + | |
− | {{tp|p=32340120|t=2020. Shedding Light on the Effect of Natural Anti-Herpesvirus Alkaloids on SARS-CoV-2: A Treatment Option for COVID-19 |pdf=|usr=}}
| + | |
− | {{tp|p=32295237|t=2020. Molecular Investigation of SARS-CoV-2 Proteins and Their Interactions with Antiviral Drugs |pdf=|usr=}}
| + | |
− | {{tp|p=32313883|t=2020. Inhaled biguanides and mTOR inhibition for influenza and coronavirus (Review) |pdf=|usr=}}
| + | |
− | {{tp|p=C7118592|t=ä. Understanding of guidance for acupuncture and moxibustion interventions on COVID-19 (Second edition) issued by CAAM |pdf=|usr=}}
| + | |
− | {{ttp|p=32312290|t=2020. Salvage use of tissue plasminogen activator (tPA) in the setting of acute respiratory distress syndrome (ARDS) due to COVID-19 in the USA: a Markov decision analysis |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=32377965|t=ä. The role of vitamin D in the prevention of coronavirus disease 2019 infection and mortality |pdf=|usr=}}
| + | |
− | {{tp|p=32297520|t=2020. Can spironolactone be used to prevent COVID-19-induced acute respiratory distress syndrome in patients with hypertension?|pdf=|usr=}}
| + | |
− | {{tp|p=32297519|t=2020. COVID-19 and vitamin D?Is there a link and an opportunity for intervention?|pdf=|usr=}}
| + | |
− | {{tp|p=32191676|t=2020. Natural small molecules as inhibitors of coronavirus lipid-dependent attachment to host cells: a possible strategy for reducing SARS-COV-2 infectivity?|pdf=|usr=}}
| + | |
− | {{tp|p=32286694|t=2020. Letter: Covid-19, and vitamin D Authors reply |pdf=|usr=}}
| + | |
− | {{tp|p=32281109|t=2020. Letter: Covid-19, and vitamin D |pdf=|usr=}}
| + | |
− | {{tp|p=32339299|t=2020. Is global BCG vaccination-induced trained immunity relevant to the progression of SARS-CoV-2 pandemic?|pdf=|usr=}}
| + | |
− | {{tp|p=32330314|t=2020. Is BCG vaccination affecting the spread and severity of COVID-19?|pdf=|usr=}}
| + | |
− | {{tp|p=32349517|t=2020. Becoming a Faithful Defender: Traditional Chinese Medicine against Coronavirus Disease 2019 (COVID-19) |pdf=|usr=}}
| + | |
− | {{tp|p=32164424|t=2020. COVID-19: An Update on the Epidemiological, Clinical, Preventive and Therapeutic Evidence and Guidelines of Integrative Chinese-Western Medicine for the Management of 2019 Novel Coronavirus Disease |pdf=|usr=}}
| + | |
− | {{tp|p=32358817|t=2020. Dramatic improvement after tocilizumab of severe COVID-19 in a child with sickle cell disease and acute chest syndrome |pdf=|usr=}}
| + | |
− | {{tp|p=32282956|t=2020. Rapid and severe Covid-19 pneumonia with severe acute chest syndrome in a sickle cell patient successfully treated with tocilizumab |pdf=|usr=}}
| + | |
− | {{tp|p=32247518|t=2020. COVID-19 and Chloroquine/Hydroxychloroquine: is there Ophthalmological Concern?|pdf=|usr=}}
| + | |
− | {{tp|p=32207983|t=2020. Covid-19 infection and mortality: a physiologist?s perspective enlightening clinical features and plausible interventional strategies |pdf=|usr=}}
| + | |
− | {{tp|p=32314704|t=2020. Ivermectin and Novel Coronavirus Disease (COVID-19): Keeping Rigor in Times of Urgency |pdf=|usr=}}
| + | |
− | {{tp|p=32359210|t=2020. Clinical Course of COVID-19 in a Liver Transplant Recipient on Hemodialysis and Response to Tocilizumab Therapy: A Case Report |pdf=|usr=}}
| + | |
− | {{tp|p=32324331|t=2020. COVID-19 pneumonia in a kidney transplant recipient successfully treated with tocilizumab and hydroxychloroquine |pdf=|usr=}}
| + | |
− | {{tp|p=32274985|t=2020. Novel Coronavirus Disease (COVID-19): The Need for Immunoprevention at Industrial Scale |pdf=|usr=}}
| + | |
− | {{tp|p=32352178|t=2020. Editorial: low population mortality from COVID-19 in countries south of latitude 35 degrees North-supports vitamin D as a factor determining severity Authors reply |pdf=|usr=}}
| + | |
− | {{tp|p=32311755|t=2020. Editorial: low population mortality from COVID-19 in countries south of latitude 35 degrees North supports vitamin D as a factor determining severity |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=32329159|t=2020. Thoughts on What Chemists Can Contribute to Fighting SARS-CoV-2 - A Short Note on Hand Sanitizers, Drug Candidates and Outreach |pdf=|usr=}}
| + | |
− | {{tp|p=32376597|t=2020. Targeting the inflammatory cascade with anakinra in moderate to severe COVID-19 pneumonia: case series |pdf=|usr=}}
| + | |
− | {{tp|p=32345616|t=2020. Anti-inflammatory therapy may ameliorate the clinical picture of COVID-19 |pdf=|usr=}}
| + | |
− | {{tp|p=32304395|t=2020. COVID-19 Respiratory Failure: Targeting Inflammation on VV-ECMO Support |pdf=|usr=}}
| + | |
− | {{ttp|p=32349115|t=ä. Chloroquine and Hydroxychloroquine Retinal Toxicity Consideration in the Treatment of COVID-19 |pdf=|usr=}}
| + | |
− | {{tp|p=32380318|t=ä. Why judiciously timed anti-IL 6 therapy may be of benefit in severe COVID-19 infection |pdf=|usr=}}
| + | |
− | {{tp|p=32380316|t=ä. Convalescent plasma in Covid-19: Possible mechanisms of action |pdf=|usr=}}
| + | |
− | {{tp|p=32380315|t=ä. Continuous hydroxychloroquine or colchicine therapy does not prevent infection with SARS-CoV-2: Insights from a large healthcare database analysis |pdf=|usr=}}
| + | |
− | {{tp|p=32376396|t=ä. Tocilizumab for cytokine storm syndrome in COVID-19 pneumonia: an increased risk for candidemia?|pdf=|usr=}}
| + | |
− | {{tp|p=32376395|t=ä. SARS-CoV-2 infection among patients with systemic autoimmune diseases |pdf=|usr=}}
| + | |
− | {{ttp|p=32376392|t=ä. Should we stimulate or suppress immune responses in COVID-19? Cytokine and anti-cytokine interventions |pdf=|usr=}}
| + | |
− | {{tp|p=32376403|t=ä. Imatinib might constitute a treatment option for lung involvement in COVID-19 |pdf=|usr=}}
| + | |
− | {{ttp|p=32376394|t=ä. Immunomodulatory therapy for the management of severe COVID-19 Beyond the anti-viral therapy: A comprehensive review |pdf=|usr=}}
| + | |
− | {{ttp|p=32376397|t=ä. Seven recommendations to rescue the patients and reduce the mortality from COVID-19 infection: An immunological point of view |pdf=|usr=}}
| + | |
− | {{tp|p=32376398|t=ä. Tocilizumab for the treatment of severe COVID-19 pneumonia with hyperinflammatory syndrome and acute respiratory failure: A single center study of 100 patients in Brescia, Italy |pdf=|usr=}}
| + | |
− | {{tp|p=32361195|t=ä. SARS-CoV-2 infection complicated by inflammatory syndrome Could high-dose human immunoglobulin for intravenous use (IVIG) be beneficial?|pdf=|usr=}}
| + | |
− | {{tp|p=32304139|t=ä. Progress and Concept for COVID?19 Vaccine Development |pdf=|usr=}}
| + | |
− | {{tp|p=32213152|t=2020. Are there any Therapeutic Options Currently Available for Wuhan Coronavirus?|pdf=|usr=}}
| + | |
− | {{tp|p=32299796|t=2020. Antirheumatic agents in covid-19: is IL-6 the right target?|pdf=|usr=}}
| + | |
− | {{ttp|p=32376613|t=2020. Inhibition of SARS-CoV-2 infection by the cyclophilin inhibitor Alisporivir (Debio 025) |pdf=|usr=}}
| + | |
− | {{tp|p=32366720|t=2020. Identification of antiviral drug candidates against SARS-CoV-2 from FDA-approved drugs |pdf=|usr=}}
| + | |
− | {{tp|p=32312781|t=2020. Nafamostat Mesylate Blocks Activation of SARS-CoV-2: New Treatment Option for COVID-19 |pdf=|usr=}}
| + | |
− | {{tp|p=32205349|t=2020. Updated Approaches against SARS-CoV-2 |pdf=|usr=}}
| + | |
− | {{tp|p=32229155|t=2020. Can Bioactive Lipids Inactivate Coronavirus (COVID-19)?|pdf=|usr=}}
| + | |
− | {{tp|p=32339387|t=2020. COVID-19, pulmonary mast cells, cytokine storms, and beneficial actions of luteolin |pdf=|usr=}}
| + | |
− | {{tp|p=32282033|t=2020. Initiating adjunct low-dose hydroxyurea therapy for stroke prevention in children with SCA during the COVID-19 pandemic |pdf=|usr=}}
| + | |
− | {{tp|p=32362106|t=2020. Management of conjunctivitis during the COVID-19 pandemic 2020 |pdf=|usr=}}
| + | |
− | {{tp|p=32302379|t=2020. The BTK inhibitor ibrutinib may protect against pulmonary injury in COVID-19-infected patients |pdf=|usr=}}
| + | |
− | {{tp|p=32366511|t=2020. Developing a vaccine for covid-19 |pdf=|usr=}}
| + | |
− | {{tp|p=32357949|t=2020. Covid-19: Remdesivir is helpful but not a wonder drug, say researchers |pdf=|usr=}}
| + | |
− | {{tp|p=32217607|t=2020. Covid-19: what treatments are being investigated?|pdf=|usr=}}
| + | |
− | {{tp|p=32217555|t=2020. Covid-19: FDA approves use of convalescent plasma to treat critically ill patients |pdf=|usr=}}
| + | |
− | {{tp|p=32209549|t=2020. Covid-19: trials of four potential treatments to generate "robust data" of what works |pdf=|usr=}}
| + | |
− | {{tp|p=32340998|t=2020. Covid-19: What do we know so far about a vaccine?|pdf=|usr=}}
| + | |
− | {{tp|p=32321732|t=2020. Remdesivir in covid-19 |pdf=|usr=}}
| + | |
− | {{tp|p=32359080|t=2020. Off-target ACE2 ligands: Possible therapeutic option for CoVid-19?|pdf=|usr=}}
| + | |
− | {{tp|p=32304110|t=2020. Dosing will be a key success factor in repurposing antivirals for COVID-19 |pdf=|usr=}}
| + | |
− | {{ttp|p=32369628|t=2020. Convalescent donor SARS-COV-2-specific cytotoxic T lymphocyte infusion as a possible treatment option for COVID-19 patients with severe disease has not received enough attention till date |pdf=|usr=}}
| + | |
− | {{tp|p=32369612|t=2020. Interleukin 6-blockade treatment for severe COVID-19 in two patients with multiple myeloma |pdf=|usr=}}
| + | |
− | {{tp|p=32368792|t=2020. Potential Therapeutic Targets and Promising Drugs for Combating SARS-CoV-2 |pdf=|usr=}}
| + | |
− | {{ttp|p=32358833|t=2020. A rational roadmap for SARS-CoV-2/COVID-19 pharmacotherapeutic research and development IUPHAR Review 29 |pdf=|usr=}}
| + | |
− | {{tp|p=32329520|t=2020. Current pharmacological treatments for COVID-19: What s next?|pdf=|usr=}}
| + | |
− | {{tp|p=32371479|t=2020. Cytokine Storm Drugs Move from CAR T to COVID-19 |pdf=|usr=}}
| + | |
− | {{tp|p=32303509|t=2020. Harnessing CAR T-cell Insights to Develop Treatments for Hyperinflammatory Responses in Patients with COVID-19 |pdf=|usr=}}
| + | |
− | {{tp|p=32276929|t=2020. TMPRSS2 and COVID-19: Serendipity or Opportunity for Intervention?|pdf=|usr=}}
| + | |
− | {{ttp|p=32324951|t=2020. Drug Development and Medicinal Chemistry Efforts toward SARS-Coronavirus and Covid-19 Therapeutics |pdf=|usr=}}
| + | |
− | {{tp|p=32245590|t=2020. Traditional Chinese Medicine: an effective treatment for 2019 novel coronavirus pneumonia (NCP) |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=32379692|t=ä. Traditional Chinese Medicine treatment of COVID-19 |pdf=|usr=}}
| + | |
− | {{tp|p=32379639|t=2020. Herbal medicine for treatment of children diagnosed with COVID-19: A review of guidelines |pdf=|usr=}}
| + | |
− | {{ttp|p=32271624|t=2020. Will Complement Inhibition be the New Target in Treating COVID-19 Related Systemic Thrombosis?|pdf=|usr=}}
| + | |
− | {{tp|p=32333649|t=2020. The friendly use of chloroquine in the COVID-19 disease: a warning for the G6PD-deficient males and for the unaware carriers of pathogenic alterations of the G6PD gene |pdf=|usr=}}
| + | |
− | {{tp|p=32378737|t=2020. The Approved Dose of Ivermectin Alone is not the Ideal Dose for the Treatment of COVID-19 |pdf=|usr=}}
| + | |
− | {{tp|p=32356569|t=2020. Challenges in Drug Development Posed by the COVID-19 Pandemic: An Opportunity for Clinical Pharmacology |pdf=|usr=}}
| + | |
− | {{tp|p=32246834|t=2020. Favipiravir: Pharmacokinetics and Concerns About Clinical Trials for 2019-nCoV Infection |pdf=|usr=}}
| + | |
− | {{tp|p=32350860|t=2020. Dose Rationale for Favipiravir Use in Patients Infected With SARS-CoV-2 |pdf=|usr=}}
| + | |
− | {{tp|p=32348551|t=2020. Response to: Optimizing Hydroxychloroquine Dosing for Patients With COVID-19: An Integrative Modeling Approach for Effective Drug Repurposing: Quantitative Clinical Pharmacology Input to SARS-CoV-2 Therapeutics Should Be Based on Robust Data |pdf=|usr=}}
| + | |
− | {{tp|p=32302411|t=2020. Clinical Pharmacology Perspectives on the Antiviral Activity of Azithromycin and Use in COVID-19 |pdf=|usr=}}
| + | |
− | {{tp|p=32167153|t=2020. Soluble angiotensin-converting enzyme 2: a potential approach for coronavirus infection therapy?|pdf=|usr=}}
| + | |
− | {{tp|p=32345063|t=2020. Truncated IV acetylcysteine treatment duration has potential to safely preserve resources during the COVID-19 pandemic |pdf=|usr=}}
| + | |
− | {{tp|p=32315229|t=2020. COVID-19 and the CRISPR Community Response |pdf=|usr=}}
| + | |
− | {{tp|p=32321407|t=2020. Hispidin and Lepidine E: two Natural Compounds and Folic acid as Potential Inhibitors of 2019-novel coronavirus Main Protease (2019-nCoVMpro), molecular docking and SAR study |pdf=|usr=}}
| + | |
− | {{ttp|p=32297571|t=2020. SARS-CoV-2: Recent Reports on Antiviral Therapies Based on Lopinavir/Ritonavir, Darunavir/Umifenovir, Hydroxychloroquine, Remdesivir, Favipiravir and Other Drugs for the Treatment of the New Coronavirus|pdf=|usr=}}
| + | |
− | {{tp|p=32334502|t=2020. The Mechanistic Target of Rapamycin (mTOR): Novel Considerations as an Antiviral Treatment|pdf=|usr=}}
| + | |
− | {{tp|p=32133962|t=2020. Effective Chemicals against Novel Coronavirus (COVID-19) in China |pdf=|usr=}}
| + | |
− | {{tp|p=32314492|t=ä. Doxycycline, a widely used antibiotic in dermatology with a possible anti?inflammatory action against IL?6 in COVID?19 outbreak |pdf=|usr=}}
| + | |
− | {{tp|p=32237190|t=ä. What does androgenetic alopecia have to do with COVID?19? An insight into a potential new therapy |pdf=|usr=}}
| + | |
− | {{tp|p=32227357|t=ä. COVID?19 treatment by repurposing drugs until the vaccine is in sight |pdf=|usr=}}
| + | |
− | {{tp|p=32377559|t=ä. COVID-19: Review of Epidemiology and Potential Treatments Against 2019 Novel Coronavirus |pdf=|usr=}}
| + | |
− | {{tp|p=32374010|t=2020. Are probiotics effective adjuvant therapeutic choice in patients with COVID-19?|pdf=|usr=}}
| + | |
− | {{tp|p=32374009|t=2020. Potential mechanisms by which the oxygen-ozone (O2-O3) therapy could contribute to the treatment against the coronavirus COVID-19 |pdf=|usr=}}
| + | |
− | {{tp|p=32369103|t=ä. Sacubitril/valsartan in COVID-19 patients: the need for trials |pdf=|usr=}}
| + | |
− | {{tp|p=32373994|t=2020. Could host cell receptor alteration prevent SARS-CoV-2 viral entry? - Hype or hope |pdf=|usr=}}
| + | |
− | {{tp|p=32373992|t=2020. MSCs transplantation may be a potential therapeutic strategy for COVID-19 treatment |pdf=|usr=}}
| + | |
− | {{tp|p=32373991|t=2020. In silico screening of natural compounds against COVID-19 by targeting Mpro and ACE2 using molecular docking |pdf=|usr=}}
| + | |
− | {{tp|p=32362193|t=2020. Quadruple therapy for asymptomatic COVID-19 infection patients |pdf=|usr=}}
| + | |
− | {{tp|p=32366131|t=2020. Harnessing the potential of CRISPR-based platforms to advance the field of hospital medicine |pdf=|usr=}}
| + | |
− | {{tp|p=32336007|t=2020. DPP4 inhibition: preventing SARS-CoV-2 infection and/or progression of COVID-19?|pdf=|usr=}}
| + | |
− | {{tp|p=32224164|t=2020. COVID-19 and diabetes: Can DPP4 inhibition play a role?|pdf=|usr=}}
| + | |
− | {{tp|p=32278585|t=2020. Favorable changes of CT findings in a patient with COVID-19 pneumonia after treatment with tocilizumab |pdf=|usr=}}
| + | |
− | {{ttp|p=32337769|t=2020. (tt bradykinin) Noscapine, a possible drug candidate for attenuation of cytokine release associated with SARS-CoV-2 |pdf=|usr=}}
| + | |
− | {{tp|p=32352361|t=2020. Facing the SARS-CoV-2 (COVID-19) outbreak with IL-6R antagonists |pdf=|usr=}}
| + | |
− | {{tp|p=32359101|t=2020. A hypothesized role for dysregulated bradykinin signaling in COVID-19 respiratory complications |pdf=|usr=}}
| + | |
− | {{tp|p=32281695|t=2020. Existing bitter medicines for fighting 2019-nCoV-associated infectious diseases |pdf=|usr=}}
| + | |
− | {{tp|p=32379896|t=2020. Knowledge-based structural models of SARS-CoV-2 proteins and their complexes with potential drugs |pdf=|usr=}}
| + | |
− | {{tp|p=31690127|t=2019. Identification of novel proteolytically inactive mutations in coronavirus 3C-like protease using a combined approach |pdf=|usr=}}
| + | |
− | {{tp|p=32157732|t=ä. Harnessing the immune system via Fc?R function in immune therapy: a pathway to next?gen mAbs |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=32298218|t=2020. Potential for developing a SARS-CoV receptor-binding domain (RBD) recombinant protein as a heterologous human vaccine against coronavirus infectious disease (COVID)-19 |pdf=|usr=}}
| + | |
− | {{tp|p=32317431|t=2020. Therapeutic opportunities to manage COVID-19/SARS-CoV-2 infection: Present and future |pdf=|usr=}}
| + | |
− | {{tp|p=32370727|t=2020. SARS-CoV-2 & Covid-19: Key-Roles of the Renin-Angiotensin System / Vitamin D Impacting Drug and Vaccine Developments |pdf=|usr=}}
| + | |
− | {{ttp|p=32377694|t=2020. Towards effective COVID19 vaccines: Updates, perspectives and challenges (Review) |pdf=|usr=}}
| + | |
− | {{tp|p=32338559|t=2020. Low dose radiation therapy for COVID-19 pneumonia: is there any supportive evidence?|pdf=|usr=}}
| + | |
− | {{tp|p=32319538|t=2020. Zinc and respiratory tract infections: Perspectives for COVID19 (Review) |pdf=|usr=}}
| + | |
− | {{tp|p=32310190|t=2020. Coronavirus drugs: Using plasma from recovered patients as a treatment for COVID-19 |pdf=|usr=}}
| + | |
− | {{tp|p=32347747|t=2020. Can melatonin reduce the severity of COVID-19 pandemic?|pdf=|usr=}}
| + | |
− | {{tp|p=32268052|t=2020. Vitamin D, Covid-19 and Children |pdf=|usr=}}
| + | |
− | {{tp|p=32268051|t=2020. Optimisation of Vitamin D Status for Enhanced Immuno-protection Against Covid-19 |pdf=|usr=}}
| + | |
− | {{tp|p=32338164|t=2020. SARS-CoV-2 RNA dependent RNA polymerase (RdRp) targeting: an in silico perspective |pdf=|usr=}}
| + | |
− | {{tp|p=32306860|t=2020. Moroccan Medicinal plants as inhibitors against SARS-CoV-2 main protease: Computational investigations |pdf=|usr=}}
| + | |
− | {{tp|p=32306822|t=2020. Peptide-like and small-molecule inhibitors against Covid-19 |pdf=|usr=}}
| + | |
− | {{tp|p=32340551|t=2020. Natural products may interfere with SARS-CoV-2 attachment to the host cell |pdf=|usr=}}
| + | |
− | {{tp|p=32329419|t=2020. Andrographolide as a potential inhibitor of SARS-CoV-2 main protease: an in silico approach |pdf=|usr=}}
| + | |
− | {{tp|p=32329408|t=2020. Discovery of potential multi-target-directed ligands by targeting host-specific SARS-CoV-2 structurally conserved main protease |pdf=|usr=}}
| + | |
− | {{tp|p=32362235|t=2020. Understanding the binding affinity of ''noscapines'' with protease of SARS-CoV-2 for COVID-19 using MD simulations at different temperatures |pdf=|usr=}}
| + | |
− | {{tp|p=32362243|t=2020. Identification of new anti-nCoV drug chemical compounds from Indian spices exploiting SARS-CoV-2 main protease as target |pdf=|usr=}}
| + | |
− | {{tp|p=32364041|t=2020. Using integrated computational approaches to identify safe and rapid treatment for SARS-CoV-2 |pdf=|usr=}}
| + | |
− | {{tp|p=32364011|t=2020. FDA-approved thiol-reacting drugs that potentially bind into the SARS-CoV-2 main protease, essential for viral replication |pdf=|usr=}}
| + | |
− | {{tp|p=32362217|t=2020. In silico study the inhibition of angiotensin converting enzyme 2 receptor of COVID-19 by Ammoides verticillata components harvested from Western Algeria |pdf=|usr=}}
| + | |
− | {{tp|p=32362245|t=2020. An investigation into the identification of potential inhibitors of SARS-CoV-2 main protease using molecular docking study |pdf=|usr=}}
| + | |
− | {{tp|p=32345124|t=2020. An in-silico evaluation of different Saikosaponins for their potency against SARS-CoV-2 using NSP15 and fusion spike glycoprotein as targets |pdf=|usr=}}
| + | |
− | {{tp|p=32340562|t=2020. A molecular modeling approach to identify effective antiviral phytochemicals against the main protease of SARS-CoV-2 |pdf=|usr=}}
| + | |
− | {{tp|p=32376368|t=ä. Identifying potential treatments of COVID-19 from Traditional Chinese Medicine (TCM) by using a data-driven approach |pdf=|usr=}}
| + | |
− | {{tp|p=32228825|t=2020. How to reduce the likelihood of coronavirus-19 (CoV-19 or SARS-CoV-2) infection and lung inflammation mediated by IL-1 |pdf=|usr=}}
| + | |
− | {{tp|p=32171193|t=2020. Induction of pro-inflammatory cytokines (IL-1 and IL-6) and lung inflammation by Coronavirus-19 (COVI-19 or SARS-CoV-2): anti-inflammatory strategies |pdf=|usr=}}
| + | |
− | {{tp|p=32367767|t=2020. Potential inhibitors of coronavirus 3-chymotrypsin-like protease (3CL(pro)): an in silico screening of alkaloids and terpenoids from African medicinal plants |pdf=|usr=}}
| + | |
− | {{tp|p=32238094|t=2020. Identification of chymotrypsin-like protease inhibitors of SARS-CoV-2 via integrated computational approach |pdf=|usr=}}
| + | |
− | {{tp|p=32345140|t=2020. Stilbene-based natural compounds as promising drug candidates against COVID-19 |pdf=|usr=}}
| + | |
− | {{tp|p=32266867|t=2020. In-silico homology assisted identification of inhibitor of RNA binding against 2019-nCoV N-protein (N terminal domain) |pdf=|usr=}}
| + | |
− | {{tp|p=32248766|t=2020. Computational studies of drug repurposing and synergism of lopinavir, oseltamivir and ritonavir binding with SARS-CoV-2 protease against COVID-19 |pdf=|usr=}}
| + | |
− | {{tp|p=32349031|t=2020. Role of Dipeptidyl Peptidase 4 Inhibitors in Diabetic Patients with Coronavirus-19 Infection |pdf=|usr=}}
| + | |
− | {{tp|p=32173110|t=2020. A systematic review on the efficacy and safety of chloroquine for the treatment of COVID-19 |pdf=|usr=}}
| + | |
− | {{tp|p=32379348|t=2020. 3CL hydrolase-based multiepitope peptide vaccine against SARS-CoV-2 using immunoinformatics |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=32227493|t=ä. Novel coronavirus treatment with ribavirin: Groundwork for an evaluation concerning COVID?19 |pdf=|usr=}}
| + | |
− | {{tp|p=32219882|t=ä. Controversial treatments: An updated understanding of the coronavirus disease 2019 |pdf=|usr=}}
| + | |
− | {{tp|p=32104907|t=ä. A systematic review of lopinavir therapy for SARS coronavirus and MERS coronavirus?A possible reference for coronavirus disease?19 treatment option |pdf=|usr=}}
| + | |
− | {{tp|p=32108352|t=ä. Clinical trial analysis of 2019?nCoV therapy registered in China |pdf=|usr=}}
| + | |
− | {{tp|p=32379346|t=2020. ACE2 Activators for the Treatment of Covid 19 Patients |pdf=|usr=}}
| + | |
− | {{tp|p=32374457|t=2020. The anti-HIV drug nelfinavir mesylate (Viracept) is a potent inhibitor of cell fusion caused by the SARSCoV-2 spike (S) glycoprotein warranting further evaluation as an antiviral against COVID-19 infections |pdf=|usr=}}
| + | |
− | {{tp|p=32369191|t=2020. Tocilizumab for the treatment of severe coronavirus disease 2019 |pdf=|usr=}}
| + | |
− | {{tp|p=32356910|t=2020. Convalescent plasma transfusion for the treatment of COVID-19: Systematic review |pdf=|usr=}}
| + | |
− | {{tp|p=32232976|t=2020. CD-sACE2 inclusion compounds: An effective treatment for coronavirus disease 2019 (COVID-19) |pdf=|usr=}}
| + | |
− | {{tp|p=32176361|t=2020. Potentially repurposing adamantanes for COVID-19 |pdf=|usr=}}
| + | |
− | {{tp|p=32270515|t=2020. Does recombinant human Erythropoietin administration in critically ill COVID-19 patients have miraculous therapeutic effects?|pdf=|usr=}}
| + | |
− | {{tp|p=32253759|t=2020. Tocilizumab treatment in COVID-19: A single center experience |pdf=|usr=}}
| + | |
− | {{tp|p=32347974|t=2020. Metformin and COVID-19: A novel deal of an Old Drug |pdf=|usr=}}
| + | |
− | {{tp|p=32239514|t=ä. Comments on Zhang et al: Clinical trial analysis of 2019?nCoV therapy registered in China |pdf=|usr=}}
| + | |
− | {{tp|p=32236562|t=2020. Treating COVID-19 with Chloroquine |pdf=|usr=}}
| + | |
− | {{ttp|p=32378064|t=ä. Feasibility of Therapeutic Effects of the Cholinergic Anti-Inflammatory Pathway on COVID-19 Symptoms |pdf=|usr=}}
| + | |
− | {{tp|p=32320059|t=2020. Potential of live pathogen vaccines for defeating the COVID-19 pandemic: history and mechanism |pdf=|usr=}}
| + | |
− | {{tp|p=32297988|t=2020. Virological and clinical cure in COVID-19 patients treated with hydroxychloroquine: A systematic review and meta-analysis |pdf=|usr=}}
| + | |
− | {{tp|p=32297985|t=2020. Evaluation of Antiviral Therapies for Coronavirus Disease 2019 (COVID-19) Pneumonia in Shanghai, China |pdf=|usr=}}
| + | |
− | {{tp|p=32297987|t=2020. Off-label Use of Tocilizumab in Patients with SARS-CoV-2 Infection |pdf=|usr=}}
| + | |
− | {{tp|p=32293713|t=2020. Treatment with convalescent plasma for COVID-19 patients in Wuhan, China |pdf=|usr=}}
| + | |
− | {{tp|p=32285942|t=2020. Defining Protective Epitopes for COVID-19 Vaccination Models |pdf=|usr=}}
| + | |
− | {{tp|p=32281679|t=2020. COVID-19: Herd Immunity and Convalescent Plasma Transfer Therapy |pdf=|usr=}}
| + | |
− | {{tp|p=32302456|t=2020. Potential of heparin and nafamostat combination therapy for COVID-19 |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=32376627|t=2020. Design of potent membrane fusion inhibitors against SARS-CoV-2, an emerging coronavirus with high fusogenic activity |pdf=|usr=}}
| + | |
− | {{tp|p=32359402|t=2020. Considering BCG vaccination to reduce the impact of COVID-19 |pdf=|usr=}}
| + | |
− | {{tp|p=32380023|t=ä. Immunomodulation in COVID-19 |pdf=|usr=}}
| + | |
− | {{tp|p=32367857|t=2020. Safety of an immunomodulator Mycobacterium w in COVID-19 |pdf=|usr=}}
| + | |
− | {{tp|p=32367847|t=2020. Nasopharyngeal wash in preventing and treating upper respiratory tract infections: Could it prevent COVID-19?|pdf=|usr=}}
| + | |
− | {{tp|p=32371362|t=2020. Mesenchymal stem cell (MSc) secretome: A possible therapeutic strategy for intensive-care COVID-19 patients |pdf=|usr=}}
| + | |
− | {{tp|p=32366816|t=2020. An Evidence Based Perspective on mRNA-SARS-CoV-2 Vaccine Development |pdf=|usr=}}
| + | |
− | {{tp|p=32376359|t=ä. Design of a peptide-based subunit vaccine against novel coronavirus SARS-CoV-2 |pdf=|usr=}}
| + | |
− | {{tp|p=32219429|t=2020. Convalescent Plasma to Treat COVID-19: Possibilities and Challenges |pdf=|usr=}}
| + | |
− | {{tp|p=32352484|t=2020. Testing an Old Therapy Against a New Disease: Convalescent Plasma for COVID-19 |pdf=|usr=}}
| + | |
− | {{tp|p=32208486|t=2020. Treating COVID-19-Off-Label Drug Use, Compassionate Use, and Randomized Clinical Trials During Pandemics |pdf=|usr=}}
| + | |
− | {{tp|p=32297900|t=2020. Finding Effective Treatments for COVID-19: Scientific Integrity and Public Confidence in a Time of Crisis |pdf=|usr=}}
| + | |
− | {{tp|p=32282022|t=2020. Pharmacologic Treatments for Coronavirus Disease 2019 (COVID-19): A Review |pdf=|usr=}}
| + | |
− | {{tp|p=32347894|t=2020. The Risks of Prescribing Hydroxychloroquine for Treatment of COVID-19-First, Do No Harm |pdf=|usr=}}
| + | |
− | {{tp|p=32243778|t=2020. Ensuring global access to COVID-19 vaccines |pdf=|usr=}}
| + | |
− | {{tp|p=32247324|t=2020. Global coalition to accelerate COVID-19 clinical research in resource-limited settings |pdf=|usr=}}
| + | |
− | {{tp|p=32251638|t=2020. Baricitinib for COVID-19: a suitable treatment?|pdf=|usr=}}
| + | |
− | {{tp|p=32251639|t=2020. Baricitinib for COVID-19: a suitable treatment? - Authors reply |pdf=|usr=}}
| + | |
− | {{ttp|p=32240961|t=2020. Routine childhood immunization may protect against COVID-19 |pdf=|usr=}}
| + | |
− | {{tp|p=32372435|t=2020. Drug repurposing in the era of COVID-19: a call for leadership and government investment |pdf=|usr=}}
| + | |
− | {{tp|p=32266987|t=2020. Corticosteroid treatment of patients with coronavirus disease 2019 (COVID-19) |pdf=|usr=}}
| + | |
− | {{tp|p=32324177|t=2020. Some drugs for COVID-19 |pdf=|usr=}}
| + | |
− | {{tp|p=32162456|t=ä. Rapid Identification of Potential Inhibitors of SARS?CoV?2 Main Protease by Deep Docking of 1 3?Billion Compounds |pdf=|usr=}}
| + | |
− | {{tp|p=32379955|t=ä. Observational Study of Hydroxychloroquine in Hospitalized Patients with Covid-19 |pdf=|usr=}}
| + | |
− | {{tp|p=32375002|t=ä. Deconvoluting Lipid Nanoparticle Structure for Messenger RNA Delivery |pdf=|usr=}}
| + | |
− | {{ttp|p=32378459|t=2020. Application of nanomaterials in treatment, anti-infection and detection of coronaviruses |pdf=|usr=}}
| + | |
− | {{ttp|p=32363750|t=2020. A Chemographic Audit of anti-Coronavirus Structure-Activity Information from Public Databases (ChEMBL) |pdf=|usr=}}
| + | |
− | {{tp|p=32369286|t=2020. A Trial of Lopinavir-Ritonavir in Covid-19 Reply |pdf=|usr=}}
| + | |
− | {{tp|p=32227757|t=2020. Developing Covid-19 Vaccines at Pandemic Speed |pdf=|usr=}}
| + | |
− | {{tp|p=32289216|t=2020. Drug Evaluation during the Covid-19 Pandemic |pdf=|usr=}}
| + | |
− | {{tp|p=32332765|t=2020. Neutralization of SARS-CoV-2 spike pseudotyped virus by recombinant ACE2-Ig |pdf=|usr=}}
| + | |
− | {{tp|p=32273604|t=2020. Lopinavir-ritonavir in severe COVID-19 |pdf=|usr=}}
| + | |
− | {{tp|p=32273591|t=2020. The COVID-19 vaccine development landscape |pdf=|usr=}}
| + | |
− | {{tp|p=32269311|t=2020. Coordinating the COVID-19 pipeline |pdf=|usr=}}
| + | |
− | {{tp|p=32127666|t=2020. Therapeutic options for the 2019 novel coronavirus (2019-nCoV) |pdf=|usr=}}
| + | |
− | {{tp|p=32376938|t=2020. China is promoting coronavirus treatments based on unproven traditional medicines |pdf=|usr=}}
| + | |
− | {{tp|p=32272481|t=2020. Structure of M(pro) from SARS-CoV-2 and discovery of its inhibitors |pdf=|usr=}}
| + | |
− | {{tp|p=32350436|t=2020. Hopes rise for coronavirus drug remdesivir |pdf=|usr=}}
| + | |
− | {{tp|p=32355243|t=2020. Scores of coronavirus vaccines are in competition - how will scientists choose the best?|pdf=|usr=}}
| + | |
− | {{tp|p=32353859|t=2020. A SARS-CoV-2 protein interaction map reveals targets for drug repurposing |pdf=|usr=}}
| + | |
− | {{tp|p=32300225|t=2020. On the front lines of the coronavirus-vaccine battle |pdf=|usr=}}
| + | |
− | {{tp|p=32346146|t=2020. The race for coronavirus vaccines: a graphical guide |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=32377399|t=2020. COVID-19 vaccines: breaking record times to first-in-human trials |pdf=|usr=}}
| + | |
− | {{tp|p=32297843|t=2020. Oligonucleotides and the COVID-19 Pandemic: A Perspective |pdf=|usr=}}
| + | |
− | {{tp|p=32380200|t=ä. In Silico Design of Antiviral Peptides Targeting the Spike Protein of SARS-CoV-2 |pdf=|usr=}}
| + | |
− | {{tp|p=32275178|t=2020. Harnessing innate immunity to eliminate SARS-CoV-2 and ameliorate COVID-19 disease |pdf=|usr=}}
| + | |
− | {{tp|p=32216577|t=2020. Artificial intelligence and machine learning to fight COVID-19 |pdf=|usr=}}
| + | |
− | {{tp|p=32380051|t=ä. The clinical benefits of Chinese patent medicines against COVID-19 based on current evidence |pdf=|usr=}}
| + | |
− | {{tp|p=32352615|t=2020. Povidone-iodine gargle as a prophylactic intervention to interrupt the transmission of SARS-CoV-2 |pdf=|usr=}}
| + | |
− | {{tp|p=32209313|t=2020. New therapeutic opportunities for COVID-19 patients with Tocilizumab: Possible correlation of interleukin-6 receptor inhibitors with osteonecrosis of the jaws |pdf=|usr=}}
| + | |
− | {{tp|p=32285489|t=2020. Chloroquine and Hydroxychloroquine in the Era of SARS - CoV2: Caution on Their Cardiac Toxicity |pdf=|usr=}}
| + | |
− | {{tp|p=32267566|t=2020. Therapeutic Potential for Tetracyclines in the Treatment of COVID-19 |pdf=|usr=}}
| + | |
− | {{tp|p=32267560|t=2020. Considerations for Statin Therapy in Patients with COVID-19 |pdf=|usr=}}
| + | |
− | {{tp|p=32259313|t=2020. Review of Emerging Pharmacotherapy for the Treatment of Coronavirus Disease 2019 |pdf=|usr=}}
| + | |
− | {{tp|p=32281114|t=2020. Delayed Initiation of Remdesivir in a COVID-19-Positive Patient |pdf=|usr=}}
| + | |
− | {{tp|p=32296012|t=2020. Potential benefits of precise corticosteroids therapy for severe 2019-nCoV pneumonia |pdf=|usr=}}
| + | |
− | {{tp|p=32295694|t=2020. COVID-19 vaccination clinical trials should consider multiple doses of BCG |pdf=|usr=}}
| + | |
− | {{tp|p=32326830|t=2020. Photobiomodulation and Antiviral Photodynamic Therapy as a Possible Novel Approach in COVID-19 Management |pdf=|usr=}}
| + | |
− | {{tp|p=32330404|t=2020. Can Transdermal Photobiomodulation Help Us at the Time of COVID-19?|pdf=|usr=}}
| + | |
− | {{tp|p=32352594|t=2020. Phytotherapic compounds against coronaviruses: Possible streams for future research |pdf=|usr=}}
| + | |
− | {{tp|p=32347602|t=2020. Should we try the antiinflammatory natural product, celastrol, for COVID-19?|pdf=|usr=}}
| + | |
− | {{tp|p=32350134|t=2020. Effective treatment of severe COVID-19 patients with tocilizumab |pdf=|usr=}}
| + | |
− | {{tp|p=32365207|t=ä. Combined treatment of tocilizumab and chloroquine on severe COVID-19: a case report |pdf=|usr=}}
| + | |
− | {{tp|p=32314850|t=2020. Melatonin: Roles in influenza, Covid?19, and other viral infections |pdf=|usr=}}
| + | |
− | {{tp|p=32374874|t=ä. COVID-19: an unexpected indication for anti-rheumatic therapies?|pdf=|usr=}}
| + | |
− | {{tp|p=32376603|t=ä. Development of an inactivated vaccine candidate for SARS-CoV-2 |pdf=|usr=}}
| + | |
− | {{tp|p=32352871|t=2020. A Radiation Mitigator as a Potential Treatment for COVID-19 |pdf=|usr=}}
| + | |
− | {{tp|p=32273254|t=2020. Cannabidiol as prophylaxis for SARS-CoV-2 and COVID-19? Unfounded claims versus potential risks of medications during the pandemic |pdf=|usr=}}
| + | |
− | {{tp|p=32167254|t=2020. Epidemie de coronavirus et polemique sur la chloroquine |pdf=|usr=}}
| + | |
− | {{tp|p=32270942|t=2020. Covid-19, dans les brouillards francais de l'hydroxychloroquine |pdf=|usr=}}
| + | |
− | {{tp|p=32301315|t=2020. Covid-19, dans les brouillards de l'hydroxychloroquine (2) |pdf=|usr=}}
| + | |
− | {{tp|p=32301312|t=2020. Vaccins anti-covid-19 : les recherches de johnson & johnson, sanofi et pasteur |pdf=|usr=}}
| + | |
− | {{tp|p=32355008|t=2020. COVID-19 shot protects monkeys |pdf=|usr=}}
| + | |
− | {{tp|p=32292113|t=2020. Stem Cell?Based Therapy for Coronavirus Disease 2019 |pdf=|usr=}}
| + | |
− | {{tp|p=32272857|t=2020. Role of Tissue Engineering in COVID-19 and Future Viral Outbreaks |pdf=|usr=}}
| + | |
− | {{tp|p=32360327|t=ä. Potential repurposing of Favipiravir in COVID-19 outbreak based on current evidence |pdf=|usr=}}
| + | |
− | {{tp|p=32302280|t=2020. Brief Summary of Potential SARS-CoV-2 Prophylactic and Treatment Drugs in the Emergency Department |pdf=|usr=}}
| + | |
− | {{tp|p=32220178|t=2020. Biological Product Development Strategies for Prevention and Treatment of Coronavirus Disease 2019 |pdf=|usr=}}
| + | |
− | {{tp|p=32374891|t=2020. Convalescent plasma to treat coronavirus disease 2019 (COVID-19): considerations for clinical trial design |pdf=|usr=}}
| + | |
− | {{tp|p=32374890|t=2020. COVID-19 convalescent plasma: phase 2 |pdf=|usr=}}
| + | |
− | {{tp|p=32245869|t=2020. Possible treatment of Covid-19 with a therapeutic vaccine |pdf=|usr=}}
| + | |
− | {{tp|p=32221001|t=2020. Possible method for the production of a Covid-19 vaccine |pdf=|usr=}}
| + | |
− | {{tp|p=32324899|t=2020. Operational protocol for donation of anti-COVID-19 convalescent plasma in Italy |pdf=|usr=}}
| + | |
− | {{tp|p=32319102|t=2020. Points to consider in the preparation and transfusion of COVID-19 convalescent plasma |pdf=|usr=}}
| + | |
− | {{tp|p=32240545|t=2020. Collecting and evaluating convalescent plasma for COVID-19 treatment: why and how?|pdf=|usr=}}
| + | |
− | {{tp|p=32268018|t=2020. Analysis of medication characteristics of traditional Chinese medicine in treating coronavirus disease-19 based on data mining |pdf=|usr=}}
| + | |
− | {{tp|p=32281335|t=2020. Research progress of intervention of Chinese herbal medicine and its active components on human coronavirus |pdf=|usr=}}
| + | |
− | {{tp|p=32281333|t=2020. Analysis of property and efficacy of traditional Chinese medicine in staging revention and treatment of coronavirus disease 2019 |pdf=|usr=}}
| + | |
− | {{tp|p=32281332|t=2020. Study on medication regularity of traditional Chinese medicine in treatment of COVID-19 based on data mining |pdf=|usr=}}
| + | |
− | {{tp|p=32281331|t=2020. Analysis on pattern of prescriptions and syndromes of traditional Chinese medicine for prevention and treatment of COVID-19 |pdf=|usr=}}
| + | |
− | {{tp|p=32281330|t=2020. Analysis on clinical study protocols of traditional Chinese medicine for coronavirus disease 2019 |pdf=|usr=}}
| + | |
− | {{ttp|p=32281329|t=2020. Study on treatment of "cytokine storm" by anti-2019-nCoV prescriptions based on arachidonic acid metabolic pathway |pdf=|usr=}}
| + | |
− | {{tp|p=32281328|t=2020. Study on screening potential traditional Chinese medicines against 2019-nCoV based on Mpro and PLP |pdf=|usr=}}
| + | |
− | {{tp|p=32281327|t=2020. Rapid establishment of traditional Chinese medicine prevention and treatment of 2019-nCoV based on clinical experience and molecular docking |pdf=|usr=}}
| + | |
− | {{tp|p=32164085|t=2020. Expert consensus on chloroquine phosphate for the treatment of novel coronavirus pneumonia |pdf=|usr=}}
| + | |
− | {{tp|p=32164084|t=2020. Expert consensus on the use of corticosteroid in patients with 2019-nCoV pneumonia |pdf=|usr=}}
| + | |
− | {{tp|p=32164080|t=2020. Potential antiviral therapeutics for 2019 Novel Coronavirus |pdf=|usr=}}
| + | |
− | {{tp|p=32164081|t=2020. Pharmacotherapeutics for the new coronavirus pneumonia |pdf=|usr=}}
| + | |
− | {{tp|p=32164077|t=2020. Pharmacotherapeutic about the new coronavirus pneumonia |pdf=|usr=}}
| + | |
− | {{tp|p=32114746|t=2020. Drug interaction monitoring of lopinavir/ritonavir in COVID-19 patients with cancer |pdf=|usr=}}
| + | |
− | {{tp|p=32234130|t=2020. Progress and challenge of vaccine development against 2019 novel coronavirus (2019-nCoV) |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=C7203037|t=ä. (Vitamin-C; Ozone)Two known therapies could be useful as adjuvant therapy in critical patients infected by COVID-19? |pdf=|usr=}}
| + | |
− | {{tp|p=C7197234|t=2020. Safety concerns with higher dosage chloroquine in COVID-19 patients |pdf=|usr=}}
| + | |
− | {{tp|p=C7197245|t=2020. Antimalarial use in COVID-19 patients requires close monitoring |pdf=|usr=}}
| + | |
− | {{tp|p=C7180667|t=ä. Achilles heel of the killer virus: the highly important molecular targets for hitting SARS-CoV-2 that causes COVID-19 |pdf=|usr=}}
| + | |
− | {{tp|p=C7190525|t=2020. Adjunct Immunotherapies for the Management of Severely Ill COVID-19 Patients |pdf=|usr=}}
| + | |
− | {{tp|p=C7152890|t=2020. Biomimetic nanoparticles as universal influenza vaccine |pdf=|usr=}}
| + | |
− | {{tp|p=C7149307|t=ä. Die Anwendung der Traditionellen Chinesischen Medizin... |pdf=|usr=}}
| + | |
− | {{tp|p=C7144855|t=ä. Protocolo de diagn�stico y tratamiento para COVID-19 mediante medicina tradicional china? |pdf=|usr=}}
| + | |
− | {{tp|p=32292907|t=2020. Standing out from the crowd in treating COVID-19 |pdf=|usr=}} the title has been idioted from ''Potential TRPV1 blockade to treat severe lung dysfunction in COVID-19 infection.''
| + | |
− | {{tp|p=C7187737|t=ä. COVID-19 and the Rationale for Pharmacotherapy: A South African Perspective |pdf=|usr=}}
| + | |
− | {{tp|p=C7167691|t=2020. (Deutsche Szene) Schutz vor und Hilfe bei Covid19 Infektionen |pdf=|usr=}}
| + | |
− | {{tp|p=C7149252|t=2020. Traditionelle Chinesische Medizin ... Ein Bericht aus Wuhan... |pdf=|usr=}}
| + | |
− | {{tp|p=32483554|t=ä. Remdesivir: A Review of Its Discovery and Development Leading to Emergency Use Authorization for Treatment of COVID-19 |pdf=|usr=}}
| + | |
− | {{tp|p=32377965|t=ä. The role of vitamin D in the prevention of coronavirus disease 2019 infection and mortality |pdf=|usr=}}
| + | |
− | {{tp|p=C7189003|t=2020. Glukokortikoide und Covid-19 |pdf=|usr=}}
| + | |
− | {{tp|p=C7189010|t=2020. Biologika und Covid-19 |pdf=|usr=}}
| + | |
− | {{tp|p=C7162107|t=2020. Chloroquin gegen Corona?|pdf=|usr=}}
| + | |
− | {{tp|p=C7187784|t=ä. Case Study: A Patient with Asthma, Covid-19 Pneumonia and Cytokine Release Syndrome Treated with Corticosteroids and Tocilizumab |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=32387535|t=ä. Asthma, biologics, corticosteroids, and coronavirus disease 2019 |pdf=|usr=}}
| + | |
− | {{ttp|p=C7197610|t=ä. Isolation of a human monoclonal antibody specific for the receptor binding domain of SARS-CoV-2 using a competitive phage biopanning strategy |pdf=|usr=}}
| + | |
− | {{tp|p=C7197606|t=ä. Antibody therapies for the treatment of COVID-19 |pdf=|usr=}}
| + | |
− | {{tp|p=32376396|t=2020. Tocilizumab for cytokine storm syndrome in COVID-19 pneumonia: an increased risk for candidemia?|pdf=|usr=}}
| + | |
− | {{tp|p=32380316|t=2020. Convalescent plasma in Covid-19: Possible mechanisms of action |pdf=|usr=}}
| + | |
− | {{tp|p=32380318|t=2020. Why judiciously timed anti-IL 6 therapy may be of benefit in severe COVID-19 infection |pdf=|usr=}}
| + | |
− | {{tp|p=32380315|t=2020. Continuous hydroxychloroquine or colchicine therapy does not prevent infection with SARS-CoV-2: Insights from a large healthcare database analysis |pdf=|usr=}}
| + | |
− | {{tp|p=32376392|t=2020. Should we stimulate or suppress immune responses in COVID-19? Cytokine and anti-cytokine interventions |pdf=|usr=}}
| + | |
− | {{tp|p=32387040|t=ä. Sofosbuvir as Repurposed Antiviral Drug Against COVID-19: Why Were We Convinced to Evaluate the Drug in a Registered/Approved Clinical Trial?|pdf=|usr=}}
| + | |
− | {{tp|p=32389697|t=ä. Plasmapheresis treatment in COVID-19?related autoimmune meningoencephalitis: Case series |pdf=|usr=}}
| + | |
− | {{tp|p=32475597|t=2020. The important role of polysaccharides from a traditional Chinese medicine-Lung Cleansing and Detoxifying Decoction against the COVID-19 pandemic |pdf=|usr=}}
| + | |
− | {{tp|p=32437659|t=2020. Trained Immunity: a Tool for Reducing Susceptibility to and the Severity of SARS-CoV-2 Infection |pdf=|usr=}}
| + | |
− | {{ttp|p=32402856|t=2020. Could an endo-lysosomal ion channel be the Achilles heel of SARS-CoV2?|pdf=|usr=}}
| + | |
− | {{ttp|p=32231345|t=ä. Inhibition of SARS-CoV-2 infection by a highly potent pan-coronavirus fusion inhibitor targeting its spike protein that harbors a high capacity to mediate membrane fusion |pdf=|usr=}}''Here we generated a series of lipopeptides derived from EK1 and found that EK1C4 was the most potent fusion inhibitor against SARS-CoV-2 S protein-mediated membrane fusion and pseudovirus infection''
| + | |
− | {{tp|p=32376238|t=2020. (rev on nat.prod.pharmacophores)Plants derived therapeutic strategies targeting chronic respiratory diseases: Chemical and immunological perspective |pdf=|usr=}}
| + | |
− | {{tp|p=32391065|t=2020. Traditional Chinese medicine contributes to the treatment of COVID-19 patients |pdf=|usr=}}
| + | |
− | {{tp|p=32402416|t=ä. Perforacion intestinal en paciente COVID-19 en tratamiento con tocilizumab y corticoides ... |pdf=|usr=}}
| + | |
− | {{tp|p=C7186126|t=ä. Proposed use of thalidomide for the cytokine storm of COVID-19 |pdf=|usr=}}
| + | |
− | {{tp|p=32379639|t=2020. Herbal medicine for treatment of children diagnosed with COVID-19: A review of guidelines |pdf=|usr=}}
| + | |
− | {{tp|p=32379692|t=2020. Traditional Chinese Medicine treatment of COVID-19 |pdf=|usr=}}
| + | |
− | {{tp|p=C7151553|t=2020. COVID-19 Coronavirus spike protein analysis for synthetic vaccines, a peptidomimetic antagonist, and therapeutic drugs, and analysis of a proposed achilles? heel conserved region to minimize probability of escape mutations and drug resistance |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=32129977|t=2020. Cell-Membrane-Mimicking Nanodecoys against Infectious Diseases |pdf=|usr=}}
| + | |
− | {{tp|p=29115746|t=2018. Progress Toward the Clinical Translation of Bioinspired Peptide and Protein Assemblies |pdf=|usr=}}
| + | |
− | {{tp|p=29717819|t=2018. Recent Advances in the Development of Antimicrobial Nanoparticles for Combating Resistant Pathogens |pdf=|usr=}}
| + | |
− | {{tp|p=28945945|t=2017. Macromolecular Antiviral Agents against Zika, Ebola, SARS, and Other Pathogenic Viruses |pdf=|usr=}}
| + | |
− | {{tp|p=32205350|t=2020. Tilorone, a Broad-Spectrum Antiviral for Emerging Viruses |pdf=|usr=}}
| + | |
− | {{tp|p=21093489|t=2011. (x)Single-dose intranasal administration with mDEF201 (adenovirus vectored mouse interferon-alpha) confers protection from mortality in a lethal SARS-CoV BALB/c mouse model |pdf=|usr=}}
| + | |
− | {{tp|p=20727913|t=2010. (x)Identification of phenanthroindolizines and phenanthroquinolizidines as novel potent anti-coronaviral agents for porcine enteropathogenic coronavirus transmissible gastroenteritis virus and human severe acute respiratory syndrome coronavirus |pdf=|usr=}}
| + | |
− | {{tp|p=16621037|t=2006. (x)Enhancement of the infectivity of SARS-CoV in BALB/c mice by IMP dehydrogenase inhibitors, including ribavirin |pdf=|usr=}}
| + | |
− | {{tp|p=31073993|t=2019. (x)Synthesis and anti?coronavirus activity of a series of 1?thia?4?azaspiro 4 5 decan?3?one derivatives |pdf=|usr=}}
| + | |
− | {{tp|p=32223926|t=2020. Remdesivir attenuates high fat diet (HFD)-induced NAFLD by regulating hepatocyte dyslipidemia and inflammation via the suppression of STING |pdf=|usr=}}
| + | |
− | *[https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3335060/ Immunization with SARS Coronavirus Vaccines Leads to Pulmonary Immunopathology on Challenge with the SARS Virus btu @OnlyTheGhosts]
| + | |
− | {{tp|p=32285908|t=2020. Chloroquine and bafilomycin A mimic lysosomal storage disorders and impair mTORC1 signalling |pdf=|usr=}}
| + | |
− | {{ttp|p=32315397|t=2020. Promoting platelets is a therapeutic option to combat severe viral infection of the lung |pdf=|usr=}}
| + | |
− | {{tp|p=32243785|t=2020. Embracing the Landscape of Therapeutics |pdf=|usr=}}
| + | |
− | {{ttp|p=32313209|t=ä. Chloroquine reduces Th17 cell differentiation by stimulating T-bet expression in T cells |pdf=|usr=}}
| + | |
− | {{tp|p=17806092|t=2008. Ferrocene Conjugates of Chloroquine and other Antimalarials: the Development of Ferroquine, a New Antimalarial |pdf=|usr=}}
| + | |
− | {{tp|p=30993690|t=2019. Emerging viruses and current strategies for vaccine intervention |pdf=|usr=}}
| + | |
− | {{tp|p=23607598|t=2013. (x)Involvement of high mobility group box 1 and the therapeutic effect of recombinant thrombomodulin in a mouse model of severe acute respiratory distress syndrome |pdf=|usr=}}
| + | |
− | {{tp|p=32099652|t=2020. Frontiers in antiviral therapy and immunotherapy |pdf=|usr=}}
| + | |
− | {{ttp|p=32321563|t=2020. IL6-R blocking with tocilizumab in critically ill patients with hemophagocytic syndrome |pdf=|usr=}}
| + | |
− | {{tp|p=32259744|t=2020. DNA vaccines: prime time is now |pdf=|usr=}}
| + | |
− | {{tp|p=32387642|t=2020. Innovations in structure-based antigen design and immune monitoring for next generation vaccines |pdf=|usr=}}
| + | |
− | {{tp|p=C7163352|t=ä. Cell-Based Therapies for COVID-19: Proper Clinical Investigations are Essential |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=32382358|t=ä. COVID-19 and Diabetes Mellitus: May Old Anti-diabetic Agents Become the New Philosopher?s Stone?|pdf=|usr=}}
| + | |
− | {{tp|p=32377559|t=ä. COVID-19: Review of Epidemiology and Potential Treatments Against 2019 Novel Coronavirus |pdf=|usr=}}
| + | |
− | {{tp|p=32387262|t=ä. Extracellular vesicles from mesenchymal stem cells as a Covid-19 treatment |pdf=|usr=}}
| + | |
− | {{tp|p=C7194243|t=ä. Coronavirus Disease 2019 (COVID-19) Spread and Pharmacovigilance Implications: Expert Opinion |pdf=|usr=}}
| + | |
− | {{tp|p=32383008|t=ä. The Role of Pharmacovigilance and ISoP During the Global COVID-19 Pandemic |pdf=|usr=}}
| + | |
− | {{tp|p=32344202|t=2020. Impact of immune enhancement on Covid-19 polyclonal hyperimmune globulin therapy and vaccine development |pdf=|usr=}}
| + | |
− | {{tp|p=32387014|t=ä. Repositionnement de la chlorpromazine ... |pdf=|usr=}}''psychiatric patients could be protected from severe forms of COVID-19 by their psychotropic treatments''
| + | |
− | {{tp|p=C7118608|t=ä. A Promising Anti-Cytokine-Storm Targeted Therapy for COVID-19: The Artificial-Liver Blood-Purification System |pdf=|usr=}}
| + | |
− | {{tp|p=32292529|t=2020. Highlights of traditional Chinese medicine frontline expert advice in the China national guideline for COVID-19 |pdf=|usr=}}
| + | |
− | {{tp|p=32381323|t=ä. Acute hemolysis by hydroxycloroquine was observed in G6PD-deficient patient with severe COVD-19 related lung injury |pdf=|usr=}}
| + | |
− | {{tp|p=C7117595|t=ä. Drug repurposing strategies for COVID-19 |pdf=|usr=}}
| + | |
− | {{tp|p=32348877|t=ä. Chemical evolution for taming the ?pathogenic kinase? PAK1 |pdf=|usr=}}
| + | |
− | {{tp|p=16022774|t=2005. (+)SARS Vaccine Development |pdf=|usr=}}
| + | |
− | {{tp|p=28861908|t=2017. (+)Issues in vaccinology: Present challenges and future directions |pdf=|usr=}}
| + | |
− | {{tp|p=31931639|t=2020. Dapsone as treatment adjunct in ARDS |pdf=|usr=}}
| + | |
− | {{tp|p=16433589|t=2006. (+)Antiviral applications of RNAi for coronavirus |pdf=|usr=}}
| + | |
− | {{tp|p=32318055|t=2020. Better Epitope Discovery, Precision Immune Engineering, and Accelerated Vaccine Design Using Immunoinformatics Tools |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=32362826|t=2020. Editorial: New Advances in RNA Targeting |pdf=|usr=}}
| + | |
− | {{tp|p=32201439|t=2020. Therapeutic options for the treatment of 2019-novel coronavirus: An evidence-based approach |pdf=|usr=}}
| + | |
− | {{tp|p=32298965|t=2020. Blocking drug-induced autophagy with chloroquine in HCT-116 colon cancer cells enhances DC maturation and T cell responses induced by tumor cell lysate |pdf=|usr=}}
| + | |
− | {{tp|p=32081774|t=2020. Discovery and development of safe-in-man broad-spectrum antiviral agents |pdf=|usr=}}
| + | |
− | {{tp|p=32380291|t=ä. Chloroquine-induced torsades de pointes in a patient with coronavirus disease 2019 |pdf=|usr=}}
| + | |
− | {{tp|p=32387130|t=ä. GTS-21, an alpha7nAChR agonist, suppressed the production of key inflammatory mediators by PBMCs that are elevated in COPD patients and associated with impaired lung function |pdf=|usr=}}
| + | |
− | {{tp|p=C7184982|t=ä. Ventricular arrhythmia risk due to chloroquine / hydroxychloroquine treatment for COVID-19: Should it be given |pdf=|usr=}}
| + | |
− | {{ttp|p=32389720|t=ä. Excessive lysosomal ion-trapping of hydroxychloroquine and azithromycin |pdf=|usr=}}
| + | |
− | {{tp|p=32389721|t=ä. Tocilizumab in COVID-19: Beware the risk of intestinal perforation |pdf=|usr=}}
| + | |
− | {{tp|p=32294495|t=ä. Chloroquine as a prophylactic agent against COVID-19?|pdf=|usr=}}
| + | |
− | {{tp|p=32386655|t=2020. Influence of immune aging on vaccine responses |pdf=|usr=}}
| + | |
− | {{tp|p=32376368|t=2020. Identifying potential treatments of COVID-19 from Traditional Chinese Medicine (TCM) by using a data-driven approach |pdf=|usr=}}
| + | |
− | {{tp|p=32451138|t=ä. ...surveillance ophtalmologique ...hydroxychloroquine e... |pdf=|usr=}}
| + | |
− | {{tp|p=32446813|t=ä. Diagnosis and treatment of novel coronavirus pneumonia based on the theory of traditional Chinese medicine |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=32277065|t=2020. Halting coronavirus polymerase |pdf=|usr=}}
| + | |
− | {{tp|p=32336762|t=2012. Design of Angiotensin?converting Enzyme 2 (ACE2) Inhibitors by Virtual Lead Optimization and Screening |pdf=|usr=}}
| + | |
− | {{tp|p=32281318|t=2020. Convalescent Plasma Therapy for Corona Virus Disease 2019: a Long Way to Go but Worth Trying |pdf=|usr=}}
| + | |
− | {{tp|p=32045235|t=ä. ?-Ketoamides as Broad-Spectrum Inhibitors of Coronavirus and Enterovirus Replication: Structure-Based Design, Synthesis, and Activity Assessment |pdf=|usr=}}
| + | |
− | {{tp|p=32105468|t=2020. Structure-Based Stabilization of Non-native Protein?Protein Interactions of Coronavirus Nucleocapsid Proteins in Antiviral Drug Design |pdf=|usr=}}
| + | |
− | {{tp|p=27905101|t=2017. (+)A review on antiviral activity of the Himalayan medicinal plants traditionally used to treat bronchitis and related symptoms |pdf=|usr=}}
| + | |
− | {{tp|p=16697221|t=2006. (+)Template-based coiled-coil antigens elicit neutralizing antibodies to the SARS-coronavirus |pdf=|usr=}}
| + | |
− | {{ttp|p=31856018|t=2020. Is there a role for tissue plasminogen activator as a novel treatment for refractory COVID-19 associated acute respiratory distress syndrome?|pdf=|usr=}}
| + | |
− | {{tp|p=32388486|t=2020. Light as a potential treatment for pandemic coronavirus infections: A perspective |pdf=|usr=}}
| + | |
− | {{tp|p=C7154570|t=2020. Anti-IL6R role in treatment of COVID-19-related ARDS |pdf=|usr=}}
| + | |
− | {{tp|p=32423584|t=2020. Remdesivir in adults with severe COVID-19: a randomised, double-blind, placebo-controlled, multicentre trial |pdf=|usr=}}
| + | |
− | {{tp|p=32423580|t=2020. Remdesivir for COVID-19: challenges of underpowered studies |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=C7202831|t=ä. Testing COVID-19 therapies to prevent progression of mild disease |pdf=|usr=}}
| + | |
− | {{tp|p=C7202844|t=ä. Vaccine development during global epidemics: the Zika experience |pdf=|usr=}}
| + | |
− | {{tp|p=32380023|t=ä. Immunomodulation in COVID-19 |pdf=|usr=}}
| + | |
− | {{tp|p=32444269|t=ä. Immunotherapies for COVID-19: lessons learned from sepsis |pdf=|usr=}}
| + | |
− | {{tp|p=32409074|t=2020. An overview of functional nanoparticles as novel emerging antiviral therapeutic agents |pdf=|usr=}}
| + | |
− | {{tp|p=C7190528|t=ä. Treatment Considerations for COVID-19: A Critical Review of the Evidence (or Lack Thereof) |pdf=|usr=}}
| + | |
− | {{tp|p=32386744|t=ä. Uso de antipaludicos (antimalarials)...|pdf=|usr=}}
| + | |
− | {{tp|p=32408073|t=2020. Lithium for the 2019 novel coronavirus |pdf=|usr=}}
| + | |
− | {{tp|p=32416413|t=2020. Covid-19 management with inflammation resolving mediators? Perspectives and potential |pdf=|usr=}}
| + | |
− | {{tp|p=32408070|t=2020. Does zinc supplementation enhance the clinical efficacy of chloroquine/hydroxychloroquine to win todays battle against COVID-19?|pdf=|usr=}}
| + | |
− | {{tp|p=32373787|t=2020. A new paradigm for drug development |pdf=|usr=}}
| + | |
− | {{tp|p=32359447|t=2020. The resurgence of convalescent plasma therapy |pdf=|usr=}}
| + | |
− | {{tp|p=32325038|t=ä. (+)Safety and immunogenicity of a candidate Middle East respiratory syndrome coronavirus viral-vectored vaccine: a dose-escalation, open-label, non-randomised, uncontrolled, phase 1 trial |pdf=|usr=}}
| + | |
− | {{tp|p=32325036|t=ä. Two Middle East respiratory syndrome vaccines: first step for other coronavirus vaccines?|pdf=|usr=}}
| + | |
− | {{ttp|p=29329956|t=2018. Herd immunity: hyperimmune globulins for the 21st century |pdf=|usr=}}''megapool for the top useful human mab''
| + | |
− | {{tp|p=31351923|t=2019. (+)First clinical trial of a MERS coronavirus DNA vaccine |pdf=|usr=}}
| + | |
− | {{tp|p=28664850|t=2017. (+)Novel translational approaches to the search for precision therapies for acute respiratory distress syndrome |pdf=|usr=}}
| + | |
− | {{tp|p=32373790|t=2020. Silencing the cytokine storm: the use of intravenous anakinra in haemophagocytic lymphohistiocytosis or macrophage activation syndrome |pdf=|usr=}}
| + | |
− | {{tp|p=29852530|t=2020. The expanding role of mass spectrometry in the field of vaccine development |pdf=|usr=}}
| + | |
− | {{tp|p=31432544|t=2020. Repurposing approved drugs on the pathway to novel therapies |pdf=|usr=}}
| + | |
− | {{tp|p=31692019|t=2020. (+)Gold nanoparticle?adjuvanted S protein induces a strong antigen?specific IgG response against severe acute respiratory syndrome?related coronavirus infection, but fails to induce protective antibodies and limit eosinophilic infiltration in lungs |pdf=|usr=}}
| + | |
− | {{tp|p=24773578|t=2014. Chloroquine interferes with dengue?2 virus replication in U937 cells |pdf=|usr=}}
| + | |
− | {{tp|p=32197324|t=2020. A Review on Applications of Computational Methods in Drug Screening and Design |pdf=|usr=}}
| + | |
− | {{tp|p=20956884|t=2010. (+)Small Interfering RNA Effectively Inhibits the Expression of SARS Coronavirus Membrane Gene at Two Novel Targeting Sites |pdf=|usr=}}
| + | |
− | {{tp|p=32317764|t=ä. Developing therapeutic monoclonal antibodies at pandemic pace |pdf=|usr=}}
| + | |
− | {{tp|p=32286537|t=ä. Hydroxychloroquine: small effects in mild disease |pdf=|usr=}}
| + | |
− | {{tp|p=32408071|t=2020. Relation between BCG coverage rate and COVID-19 infection worldwide |pdf=|usr=}}
| + | |
− | {{tp|p=C7136957|t=ä. Is Global BCG Vaccination Coverage Relevant To The Progression Of SARS-CoV-2 Pandemic?|pdf=|usr=}}
| + | |
− | {{tp|p=32388480|t=2020. Can beta-adrenergic blockers be used in the treatment of COVID-19?|pdf=|usr=}}
| + | |
− | {{tp|p=32388476|t=2020. Is copper beneficial for COVID-19 patients?|pdf=|usr=}}
| + | |
− | {{tp|p=32402766|t=2020. Hydroxychloroquine as an aerosol might markedly reduce and even prevent severe clinical symptoms after SARS-CoV-2 infection |pdf=|usr=}}
| + | |
− | {{tp|p=32387756|t=2020. SARS ? CoV-2: Reasons of epidemiology of severe ill disease cases and therapeutic approach using trivalent vaccine (tetanus, diphtheria and Bordetella pertussis) |pdf=|usr=}}
| + | |
− | {{tp|p=32438240|t=2020. 5-Fluorouracil in combination with deoxyribonucleosides and deoxyribose as possible therapeutic options for the Coronavirus, COVID-19 infection |pdf=|usr=}}
| + | |
− | {{tp|p=32387320|t=ä. Tocilizumab therapy reduced intensive care unit admissions and/or mortality in COVID-19 patients |pdf=|usr=}}
| + | |
− | {{tp|p=32387333|t=ä. Could nasal nitric oxide help to mitigate the severity of COVID-19?|pdf=|usr=}}
| + | |
− | {{tp|p=32387334|t=ä. The Forrest Gump approach to preventing severe COVID-19 ? reverse the predisposing pro-inflammatory state with exercise |pdf=|usr=}}
| + | |
− | {{tp|p=32376359|t=2020. Design of a peptide-based subunit vaccine against novel coronavirus SARS-CoV-2 |pdf=|usr=}}
| + | |
− | {{tp|p=32380958|t=2020. Extracellular HMGB1: a therapeutic target in severe pulmonary inflammation including COVID-19?|pdf=|usr=}}
| + | |
− | {{tp|p=32382315|t=2020. Can graphene take part in the fight against COVID-19?|pdf=|usr=}}
| + | |
− | {{tp|p=32313660|t=2020. A short review on antibody therapy for COVID-19 |pdf=|usr=}}
| + | |
− | {{tp|p=32377399|t=2020. COVID-19 vaccines: breaking record times to first-in-human trials |pdf=|usr=}}
| + | |
− | {{tp|p=32380200|t=2020. In silico design of antiviral peptides targeting the spike protein of SARS-CoV-2 |pdf=|usr=}}
| + | |
− | {{tp|p=32380051|t=2020. The clinical benefits of Chinese patent medicines against COVID-19 based on current evidence |pdf=|usr=}}
| + | |
− | {{tp|p=32380052|t=2020. Granulocyte-targeted therapies for airway diseases |pdf=|usr=}}
| + | |
− | {{tp|p=32389754|t=ä. (low dose radiat)RILI model and the Covid-19 pneumonia: The radiation oncologist point of view? |pdf=|usr=}}
| + | |
− | {{tp|p=32387544|t=ä. Response to: Low dose radiation therapy for COVID-19 pneumonia a double-edged sword? |pdf=|usr=}}
| + | |
− | {{tp|p=32409150|t=ä. An evaluation of co-use of chloroquine or hydroxychloroquine plus azithromycin on cardiac outcomes: A pharmacoepidemiological study to inform use during the COVID19 pandemic |pdf=|usr=}}
| + | |
− | {{tp|p=32482538|t=ä. Propuesta de uso de anakinra en el distr�s respiratorio agudo secundario a COVID-19 |pdf=|usr=}}
| + | |
− | | + | |
− | {{tp|p=32253226|t=ä. (NHC, EIDD-1931) An orally bioavailable broad-spectrum antiviral inhibits SARS-CoV-2 in human airway epithelial cell cultures and multiple coronaviruses in mice |pdf=|usr=}}
| + | |
− | {{tp|p=32418730|t=ä. ?Off-label? use of hydroxychloroquine, azithromycin, lopinavir-ritonavir and chloroquine in COVID-19: A survey of cardiac adverse drug reactions by the French Network of Pharmacovigilance Centers |pdf=|usr=}}
| + | |
− | {{tp|p=32448638|t=2020. Convalescent plasma, an apheresis research project targeting and motivating the fully recovered COVID 19 patients: A rousing message of clinical benefit to both donors and recipients alike |pdf=|usr=}}
| + | |
− | {{tp|p=32417123|t=ä. Convalescent plasma, an apheresis research project targeting and motivating the fully recovered COVID 19 patients: A rousing message of clinical benefit to both donors and recipients alike |pdf=|usr=}}
| + | |
− | {{tp|p=32387409|t=ä. Early treatment of COVID-19 patients with hydroxychloroquine and azithromycin: A retrospective analysis of 1061 cases in Marseille, France |pdf=|usr=}}
| + | |
− | {{tp|p=32387694|t=ä. Therapeutic use of chloroquine and hydroxychloroquine in COVID-19 and other viral infections: A narrative review |pdf=|usr=}}
| + | |
− | {{tp|p=32418793|t=2020. An effective CTL peptide vaccine for Ebola Zaire Based on Survivors? CD8+ targeting of a particular nucleocapsid protein epitope with potential implications for COVID-19 vaccine design |pdf=|usr=}}
| + | |
− | {{tp|p=32381478|t=2020. Enabling emergency mass vaccination: Innovations in manufacturing and administration during a pandemic |pdf=|usr=}}
| + | |
− | {{tp|p=32452420|t=2020. Antiviral activity of lycorine against Zika virus in vivo and in vitro |pdf=|usr=}}
| + | |
− | {{tp|p=32292259|t=2020. Understanding of guidance for acupuncture and moxibustion interventions on COVID-19 (Second edition) issued by CAAM |pdf=|usr=}}
| + | |
− | {{tp|p=32331804|t=ä. Hydroxychloroquine and ?off-label? utilization in the treatment of oral conditions |pdf=|usr=}}
| + | |
− | {{tp|p=32061923|t=2020. Dipeptidyl peptidase 4 inhibitors and their potential immune modulatory functions |pdf=|usr=}}
| + | |
− | {{tp|p=32289478|t=2020. Statins in coronavirus outbreak: It?s time for experimental and clinical studies |pdf=|usr=}}
| + | |
− | {{tp|p=28596841|t=2017. Targeting endosomal acidification by chloroquine analogs as a promising strategy for the treatment of emerging viral diseases |pdf=|usr=}}
| + | |
− | {{tp|p=32208449|t=2020. BRD4 inhibition exerts anti-viral activity through DNA damage-dependent innate immune responses |pdf=|usr=}}
| + | |
− | {{tp|p=32355446|t=2020. Medicaments rhumatologiques pour le traitement de l?infection par le COVID-19? |pdf=|usr=}}
| + | |
− | {{tp|p=32077621|t=2020. Glycyrrhizic?Acid?Based Carbon Dots with High Antiviral Activity by Multisite Inhibition Mechanisms |pdf=|usr=}}
| + | |
− | {{tp|p=16043204|t=2005. (+)Long-term protection from SARS coronavirus infection conferred by a single immunization with an attenuated VSV-based vaccine |pdf=|usr=}}
| + | |
− | {{tp|p=31930543|t=2020. Inactivation of three emerging viruses ? severe acute respiratory syndrome coronavirus, Crimean?Congo haemorrhagic fever virus and Nipah virus ? in platelet concentrates by ultraviolet C light and in plasma by methylene blue plus visible light |pdf=|usr=}}
| + | |